

Towards 100% Renewables in the Faroe Islands -Wind and Energy Storage Integration

Terji Nielsen

Head of R&D department Dipl.Ing. E.E. (Hons) MBA Renewables

- Introduction
 - General about SEV, Energy mix, Projected energy demand, Renewable resources
 - 100by2030 vision, 2030RoadMap
- Battery as enabler for increased wind integration
 - Schematic design, System data, Operational experiences, Business case
- 2030 Outlook

Faroe Islands

Faroe Islands

• General data:

- 18 islands (17 are populated), electrically isolated
- 51.000 inhabitants
- Area of 1.399 km²
- Main export: Fish and fish products

Electrical Company SEV

- General company facts:
 - Non-profit, founded 1st October 1946
 - 100 % owned by all Faroese municipalities
 - Vertically Integrated Company
 - Joint and several price structure
 - Monopoly on grid operation (transmission & distribution)
 - "De facto" monopoly on production (98%)
 - "Micro isolated system" in EU terms (< 500 GWh @ 1996)
 - Directive 2009/72
 - Derogation from relevant provisions in different chapters about unbundling, third party access etc.

5

Subsea Cable

Fossil fuel Powerplant

Hydro Powerplant60kV Substation

Windturbine

60kV

20kV 10kV 6kV

Electrical Company SEV

- Key figures and characteristics:
 - Peak demand: 55 MW
 - Low load: 25 MW
 - Annual consumption: 340 GWh (2017)
 - Electrically isolated from neighboring countries
 - Installed capacities:
 - Fossil fueled power plants: 65 MW
 - Hydro power: 40 MW
 - Wind power: 18 MW
 - Photovoltaics: < 0,1 MW

6

- Fossil fuel Powerplant
- Hydro Powerplant
- 60kV Substation
- 🛧 Windturbine
- _____ 60kV
- _____ 20kV
- 10kV
- 6kV

Subsea Cable

Energy Mix 1954 - 2017

Renewable energy duration curve 2015

100% RE generation

Instantaneous Wind penetration

Projected Energy Demand 2015-2030

11

SE

Renewable resources in the Faroe Islands

Renewable resources

Average wind speed: > 10m/s (Colorado: 4 m/s)

Precipitation: > 1284 mm/year (Tenerife

Peak tidal velocities: ~ 3.5 m/s

Average sun hours: ~ 1000 hrs/year (Denver: ~3100 hours)

Resource complementarity

Our Vision: "100by2030"

2030 RoadMap

Hydro power

Pumped Storage

Wind power

Unstable weather

conditions

Wind conditions

Extreme ramp rates (Húsahagi WF)

Challenging weather

20

SEL

"The best way to predict the future is to create it" Abraham Lincoln

Battery Energy Storage system smooth the variability of wind

Wind farm block diagram

Battery system in operation

SEL

Battery system in operation

SEV

Fast frequency support from the BESS

26

SE

Utilisation of Húsahagi Wind Farm

Curtailment in 2015: 22% Curtailment in 2016: 12% Curtailment in 2017: 6,7% Curtailment in 2018: 1,8%

Business case for the BESS

- Assumptions
 - Increased wind utilisation is displacing oil production
 - Fuel oil cost: 0,09 €/kWh (not including other O&M costs)
 - Energy yield estimation based on wind measurements: 40 GWh/year
 - Cost of BESS (Batteries, ENERCON E-Storage, L-EMS): approximately 2 M€
- Simple payback time is calculated to 4.5 years.
- Estimated lifetime of batteries is 20 years.

Other renewable resources

Hydropower

6 Hydropower plants Total installed capacity: 37MW First installation in 1921

Tidal energy

Photovoltaic

2030 Outlook

- Further integration of wind (projected 20-30MW every second year until 2030)
 - Batteries for short term storage (ms, sec, hrs) (10-20MW in 2020)
 - Synchronous compensators (separate units or retrofitted into existing prod. units)
- Integration of solar PV (Approximately 80MW until 2030)
 - Business models to incentivize private to invest in rooftop solar (distributed installations)
- Optimization of existing hydro power plants
 - Establishing Pumped Hydro energy storage for long time storage (hrs, days, weeks)
 - Increasing reservoir sizes
- Following tidal stream technologies and costs
 - High potential, predictable and with phase shifted tidal streams between the islands can provide base load generation
- Intelligent and autonomous overall control system
- Continuous optimization and updates of the transmission and distribution system

Thank you!

Terji Nielsen

Dipl.Ing. E.E. (hons) MBA Renewables tn@sey.fo

