EPE ELECTRIC POWER ENGINEERS

ENERGY ENGINEERING EXPERTS GENERATION | TRANSMISSION | DISTRIBUTION

CASE STUDY ON AN ALTERNATIVE APPROACH TO DISTRIBUTED ENERGY DEMAND DISPATCH

ESIG 2019 Spring Technical Workshop March 20-22, Albuquerque, NM

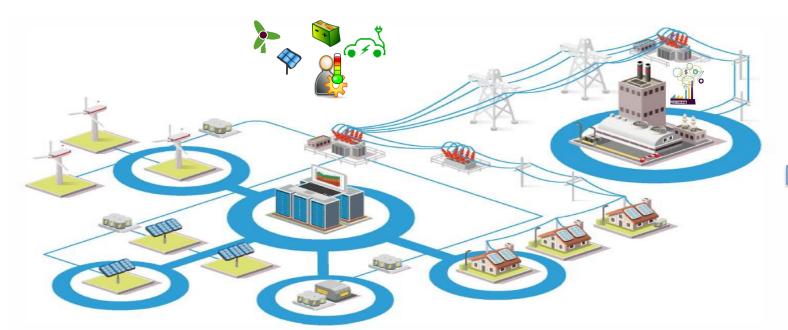
CHASE LANSDALE, *Product Manager clansdale@epeconsulting.com*

www.epeconsulting.com

3/20/2019 ESIG Spring Workshop – Chase Lansdale

ELECTRIC POWER ENGINEERS

Serving:


Investor owned utilities Municipalities Electric cooperatives Independent System Operators Energy aggregators Government entities Independent power producers Renewable Energy owners and developers Energy storage owners and developers

BACKGROUND

Electric Power Engineers, Inc. (EPE) : a leading global power system engineering and consulting firm headquartered in Austin, Texas, with services covering the entire spectrum of GENERATION, TRANSMISSION and DISTRIBUTION.

4 years of

R&D

Grid Analytics & Planning PLATFORM

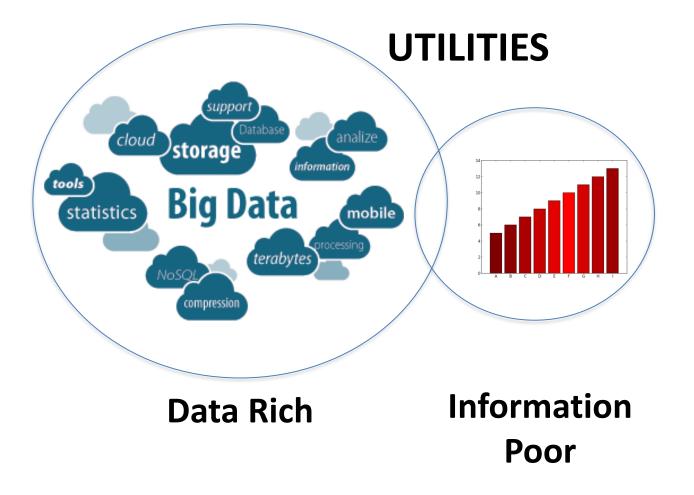
CONSULTING + SOFTWARE Integrated Planning

INTEGRATED

OUR VISION

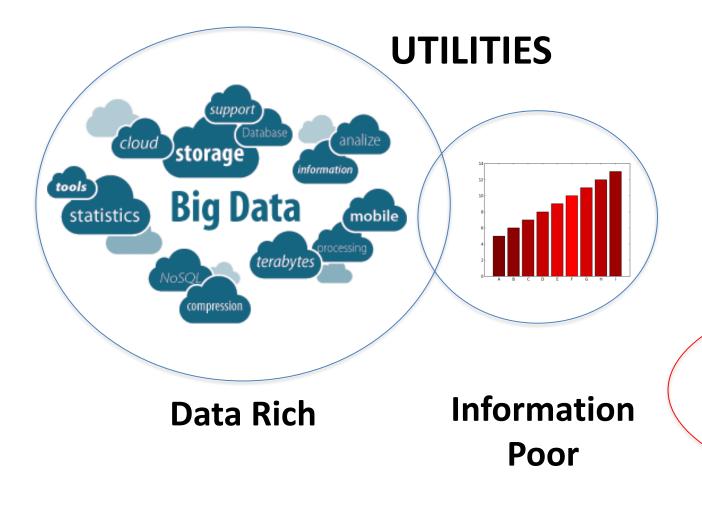
EPE

Be the leader and innovator in the application of a holistic approach to study, design, and implement of an infrastructure that enables an integrated grid of the future across G, T&D



- Why do the analysis?
- What is Demand Dispatch?
- How is it modeled?
- Optimization and Constraints
- Results & Conclusions
- What's Next

IDENTIFYING STUDIES



Our Goal:

- Identify low-hanging fruits for informative analysis
 - Transformer Loading
 - Line Loss
 - Phase Balance
 - Etc.
- Find and explore new frontiers with the available data for planning
- Test information theory in real-world applications

IDENTIFYING STUDIES

Our Goal:

- Identify low-hanging fruits for informative analysis
 - Transformer Loading
 - Line Loss
 - Phase Balance
 - Etc.
- Find and explore new frontiers with the available data
- Test information theory in real-world applications

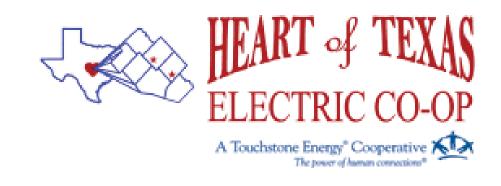
Demand Dispatch is an emerging science for controlling flexible loads to provide grid services. With the proper design, a distributed control approach can improve the utilization of the power grid while satisfying consumer preferences. This study explains how a Demand Dispatch analysis is conducted and provides results from simulations based on a physical system.

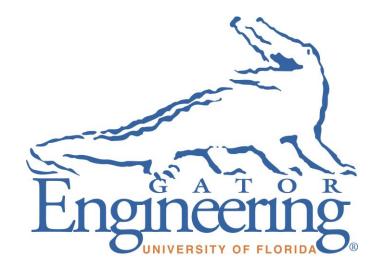
LOCALIZED DEMAND RESPONSE

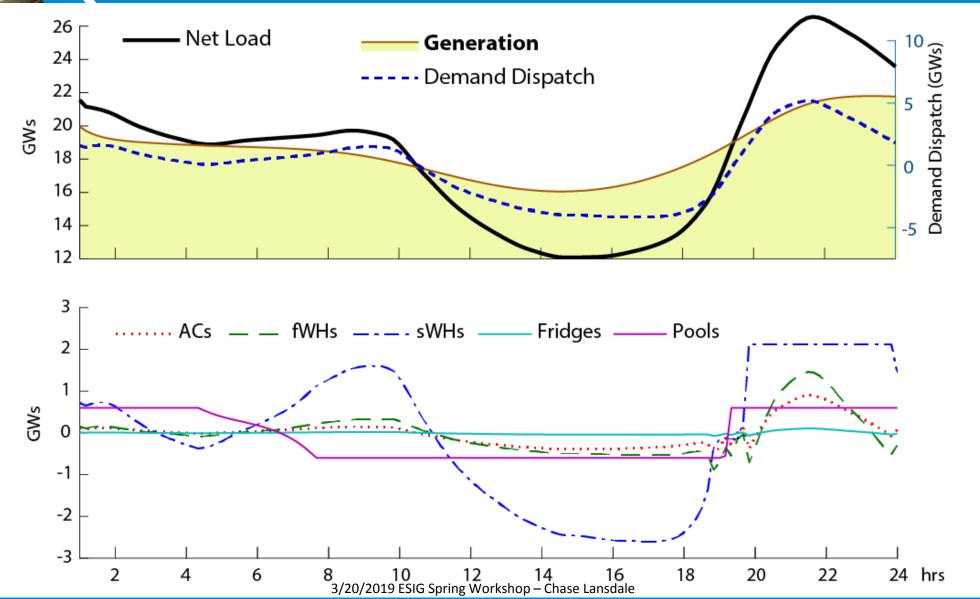
Customers set the comfort level

The state of the second test in the second test in the second sec

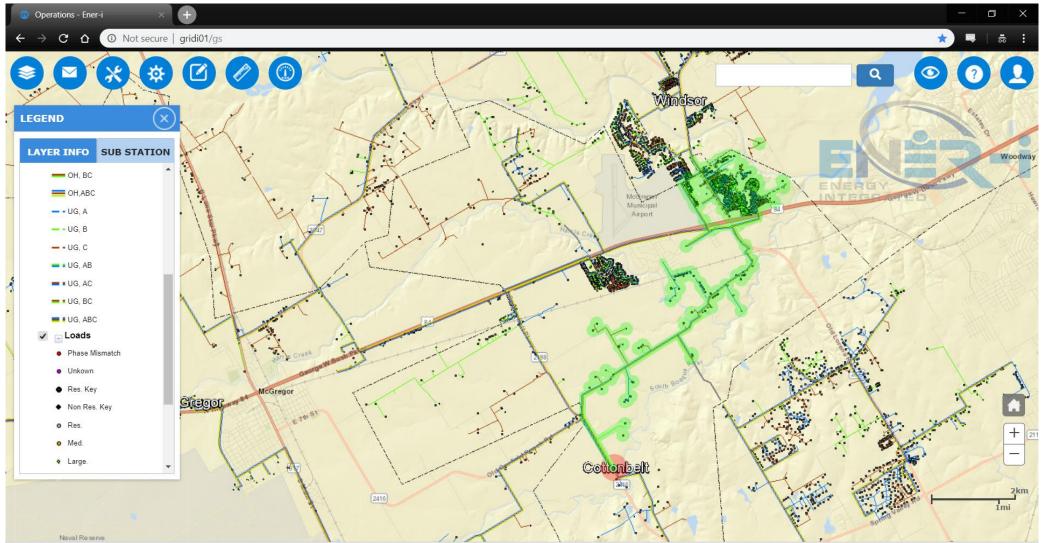
- Demand dispatch is built around the idea that many types of loads can be flexible in their power consumption while delivering the same quality of service to the consumer
- For example, consumers care about their water temperature, not instantaneous power consumption
- Maintaining water temperature within a desired range can be accomplished using many different power consumption trajectories







APPLIED THEORY: CAISO MODEL



EPE

9

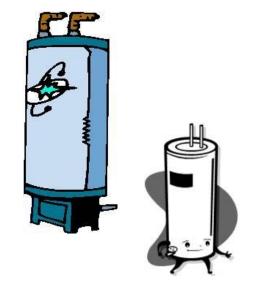
MODELING: PARTICIPANT SELECTION

Participant Selection [CIS + GIS + AMR]

Design Criteria Violations

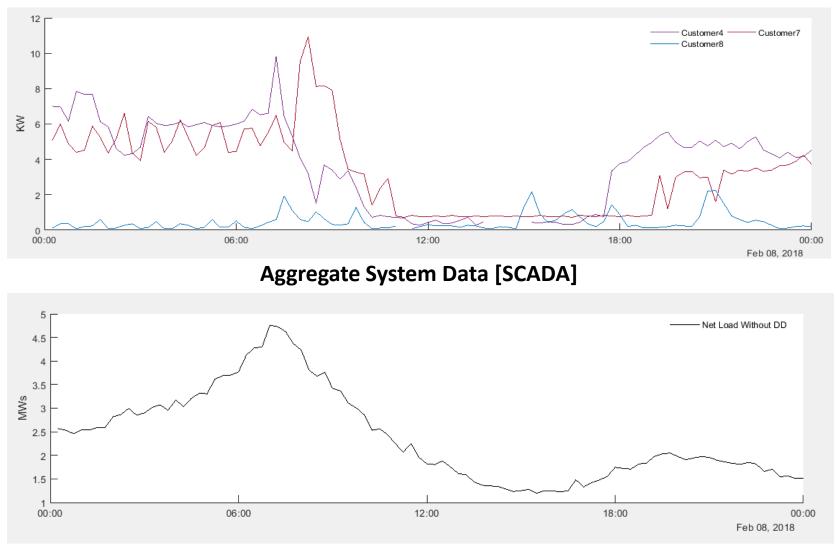
EPE

3/20/2019 ESIG Spring Workshop – Chase Lansdale



RESIDENTIAL APPLIANCES

Space Heaters Fast & Slow Water Heaters Refrigerators Pool Pumps



Member Usage Data [AMR / AMI]

3/20/2019 ESIG Spring Workshop – Chase Lansdale

• Costs are placed on:

$$\begin{aligned} \underset{g,x}{\text{minimize}} & \int_{t}^{\mathcal{T}} \begin{cases} c_{0}(g(t) - \bar{l}) + \varrho_{0}(\frac{d}{dt}g(t)) \\ & + \sum_{i=1}^{M} \left(c_{i}(x_{i}(t)) + \varrho_{i}(u_{i}(t)) \right) \\ \text{subject to} & l(t) = g(t) + \sum_{i} u_{i}(t), \\ & \frac{d}{dt}x_{i}(t) = -\alpha_{i}x_{i}(t) - u_{i}(t), \\ & \frac{d}{dt}x_{i}(t) = -\alpha_{i}x_{i}(t) - u_{i}(t), \\ & -\eta_{i-} \leq u_{i}(t) \leq \eta_{i+}, \\ & |x_{i}(t)| \leq C_{i} \\ & 0 = \int_{t}^{\mathcal{T}} u_{i}(\tau) d\tau \end{aligned}$$

- Costs are placed on:
 - Generation (\$ / Traditional >> \$ / Demand Response)

$$\begin{aligned} \underset{g,x}{\text{minimize}} & \int_{t}^{\mathcal{T}} \left\{ c_{0}(g(t) - \bar{l}) + \varrho_{0}(\frac{d}{dt}g(t)) + \sum_{i=1}^{M} \left(c_{i}(x_{i}(t)) + \varrho_{i}(u_{i}(t)) \right) \right. \\ & \left. + \sum_{i=1}^{M} \left(c_{i}(x_{i}(t)) + \varrho_{i}(u_{i}(t)) \right) \right. \\ & \left. \text{subject to} & l(t) = g(t) + \sum_{i} u_{i}(t), \\ & \left. \frac{d}{dt}x_{i}(t) = -\alpha_{i}x_{i}(t) - u_{i}(t), \\ & \left. \frac{d}{dt}x_{i}(t) = -\alpha_{i}x_{i}(t) - u_{i}(t), \\ & \left. -\eta_{i-} \leq u_{i}(t) \leq \eta_{i+}, \\ & \left| x_{i}(t) \right| \leq C_{i} \\ & \left. 0 = \int_{t}^{\mathcal{T}} u_{i}(\tau) d\tau \end{aligned} \end{aligned}$$

- Costs are placed on:
 - Generation (\$ / Traditional >> \$ / Demand Response)
 - Ramping

$$\begin{aligned} \underset{g,x}{\text{minimize}} & \int_{t}^{\mathcal{T}} \left\{ c_{0}(g(t) - \bar{l}) - \varrho_{0}(\frac{d}{dt}g(t)) \right. \\ & + \sum_{i=1}^{M} \left(c_{i}(x_{i}(t)) + \varrho_{i}(u_{i}(t)) \right) \\ \text{subject to} & l(t) = g(t) + \sum_{i} u_{i}(t), \\ & \frac{d}{dt}x_{i}(t) = -\alpha_{i}x_{i}(t) - u_{i}(t), \\ & \frac{d}{dt}x_{i}(t) = -\alpha_{i}x_{i}(t) - u_{i}(t), \\ & -\eta_{i-} \leq u_{i}(t) \leq \eta_{i+}, \\ & |x_{i}(t)| \leq C_{i} \\ & 0 = \int_{t}^{\mathcal{T}} u_{i}(\tau) d\tau \end{aligned}$$

- Costs are placed on:
 - Generation (\$ / Traditional >> \$ / Demand Response)
 - Ramping
 - Deviation from nominal energy demand (change in energy behavior)

 $\begin{aligned} \underset{g,x}{\text{minimize}} & \int_{t}^{\mathcal{T}} \left\{ c_{0}(g(t) - \bar{l}) + \varrho_{0}(\frac{d}{dt}g(t)) \\ & + \sum_{i=1}^{M} \left[\left(c_{i}(x_{i}(t)) + \varrho_{i}(u_{i}(t)) \right) \right] \\ \text{subject to} & l(t) = g(t) + \sum_{i} u_{i}(t), \\ & \frac{d}{dt}x_{i}(t) = -\alpha_{i}x_{i}(t) - u_{i}(t), \\ & \frac{d}{dt}x_{i}(t) = -\alpha_{i}x_{i}(t) - u_{i}(t), \\ & -\eta_{i-} \leq u_{i}(t) \leq \eta_{i+}, \\ & |x_{i}(t)| \leq C_{i} \end{aligned}$

$$|u_i(t)| \le C_i$$
$$0 = \int_t^T u_i(\tau) \, d\tau$$

- Costs are placed on:
 - Generation (\$ / Traditional >> \$ / Demand Response)
 - Ramping
 - Deviation from nominal energy demand (change in energy behavior)
 - Deviation from nominal power demand (Utility Control Signal)

$$\begin{aligned} \underset{g,x}{\text{minimize}} & \int_{t}^{\mathcal{T}} \begin{cases} c_{0}(g(t) - \bar{l}) + \varrho_{0}(\frac{d}{dt}g(t)) \\ & + \sum_{i=1}^{M} \left(c_{i}(x_{i}(t)) + \varrho_{i}(u_{i}(t)) \right) \\ \text{subject to} & l(t) = g(t) + \sum_{i} u_{i}(t), \\ & \frac{d}{dt}x_{i}(t) = -\alpha_{i}x_{i}(t) - u_{i}(t), \\ & \frac{d}{dt}x_{i}(t) = -\alpha_{i}x_{i}(t) - u_{i}(t), \\ & -\eta_{i-} \leq u_{i}(t) \leq \eta_{i+}, \\ & |x_{i}(t)| \leq C_{i} \\ & 0 = \int_{t}^{\mathcal{T}} u_{i}(\tau) d\tau \end{aligned}$$

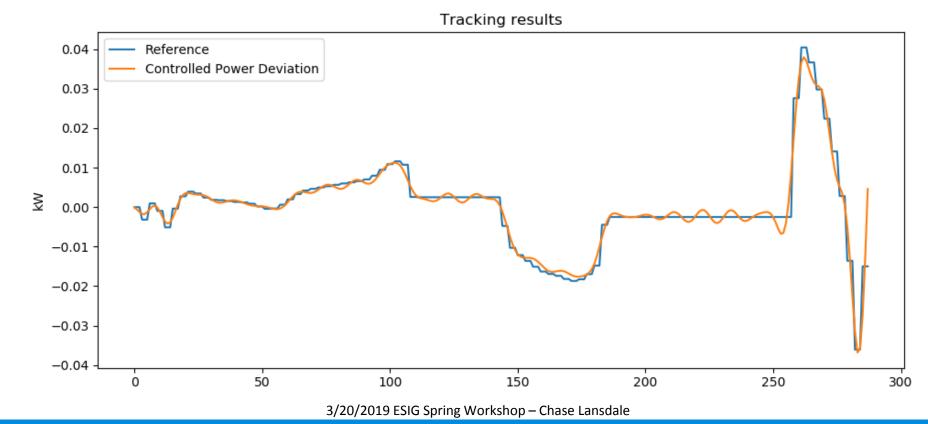
- Costs are placed on:
 - Generation (\$ / Traditional >> \$ / Demand Response)
 - Ramping
 - Deviation from nominal energy demand (change in energy behavior)
 - Deviation from nominal power demand (Utility Control Signal)
- Constraints guarantee:
 - Quality of service to the consumer (temp, etc.)

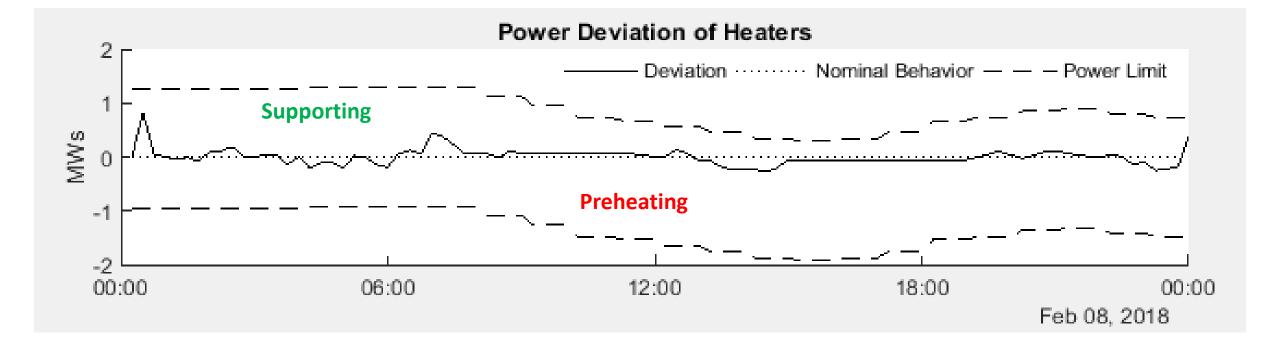
$$\begin{aligned} \underset{g,x}{\text{minimize}} & \int_{t}^{\mathcal{T}} \begin{cases} c_{0}(g(t) - \bar{l}) + \varrho_{0}(\frac{d}{dt}g(t)) \\ & + \sum_{i=1}^{M} \left(c_{i}(x_{i}(t)) + \varrho_{i}(u_{i}(t)) \right) \\ \text{subject to} & l(t) = g(t) + \sum_{i} u_{i}(t), \\ & \frac{d}{dt}x_{i}(t) = -\alpha_{i}x_{i}(t) - u_{i}(t), \\ & \frac{d}{dt}x_{i}(t) = -\alpha_{i}x_{i}(t) - u_{i}(t), \\ & -\eta_{i-} \leq u_{i}(t) \leq \eta_{i+}, \\ & |x_{i}(t)| \leq C_{i} \\ & 0 = \int_{t}^{\mathcal{T}} u_{i}(\tau) d\tau \end{aligned}$$

- Costs are placed on:
 - Generation (\$ / Traditional >> \$ / Demand Response)
 - Ramping
 - **Deviation from nominal energy demand (change in energy** behavior)
 - **Deviation from nominal power demand (Utility Control Signal)**
- **Constraints** *guarantee*: ۲
 - Quality of service to the consumer (temp, etc.)
 - Same net daily energy consumption

Quadratic program over time-period $[t, \mathcal{T}]$:

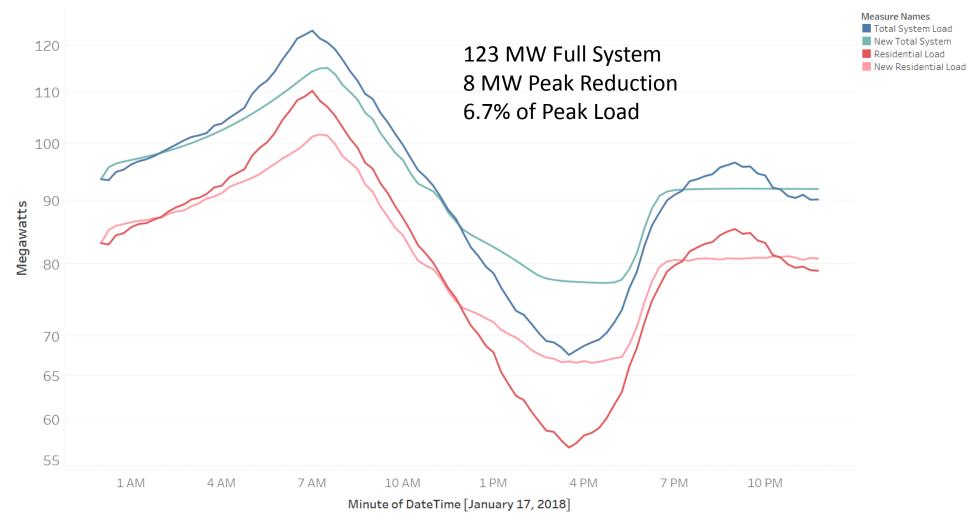
S


$$\begin{aligned} \underset{g, x}{\text{minimize}} & \int_{t}^{\mathcal{T}} \begin{cases} c_{0}(g(t) - \bar{l}) + \varrho_{0}(\frac{d}{dt}g(t)) \\ & + \sum_{i=1}^{M} \left(c_{i}(x_{i}(t)) + \varrho_{i}(u_{i}(t)) \right) \\ \text{subject to} & l(t) = g(t) + \sum_{i} u_{i}(t), \\ & \frac{d}{dt}x_{i}(t) = -\alpha_{i}x_{i}(t) - u_{i}(t), \\ & \frac{d}{dt}x_{i}(t) = -\alpha_{i}x_{i}(t) - u_{i}(t), \\ & -\eta_{i-} \leq u_{i}(t) \leq \eta_{i+}, \\ & |x_{i}(t)| \leq C_{i} \\ \hline & 0 = \int_{t}^{\mathcal{T}} u_{i}(\tau) d\tau \end{aligned}$$


Stochastic, distributed control techniques enable tracking of the desired power deviation

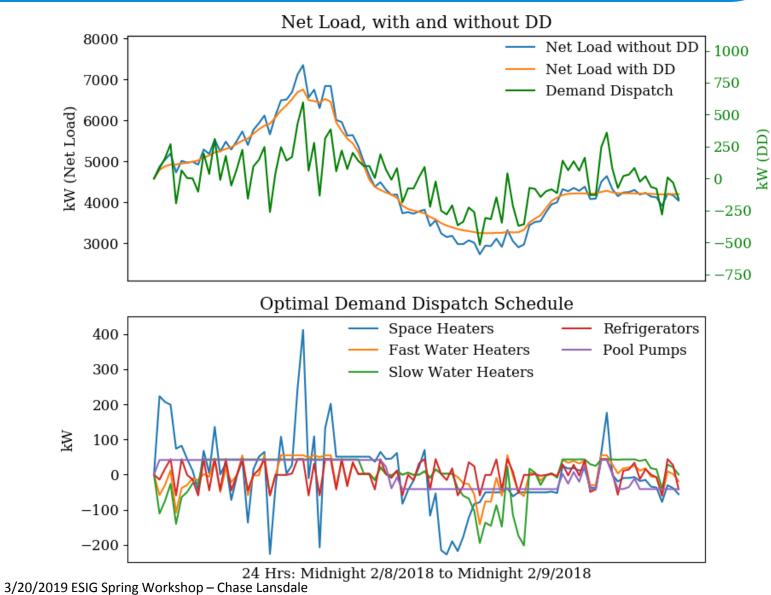
- Power deviation is computed centrally, but <u>decisions are made locally</u>
 - Local control reduces computation and communication requirements
 - Local control maintains privacy and guarantees QoS

20



RESULTS: LOAD SHAPING

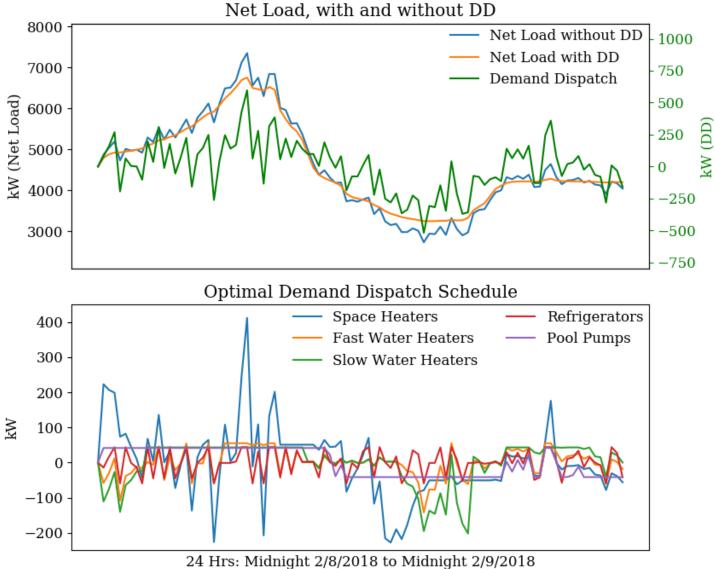
TimeSeries



The trends of Total System Load, New Total System, Residential Load and New Residential Load for DateTime Minute. Color shows details about Total System Load, New Total System, Residential Load and New Residential Load and New Residential Load.

3/20/2019 ESIG Spring Workshop – Chase Lansdale

RESULTS: LOAD SHAPING

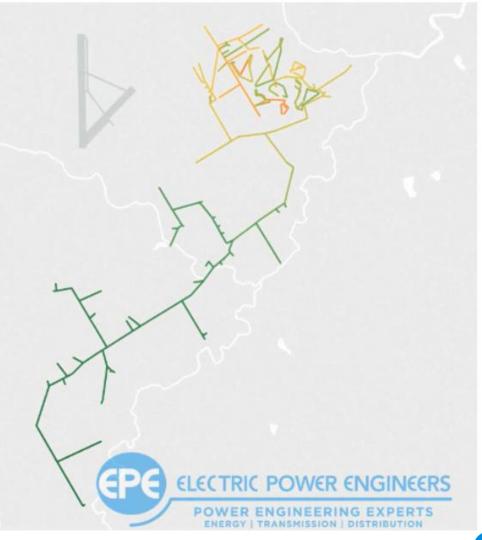


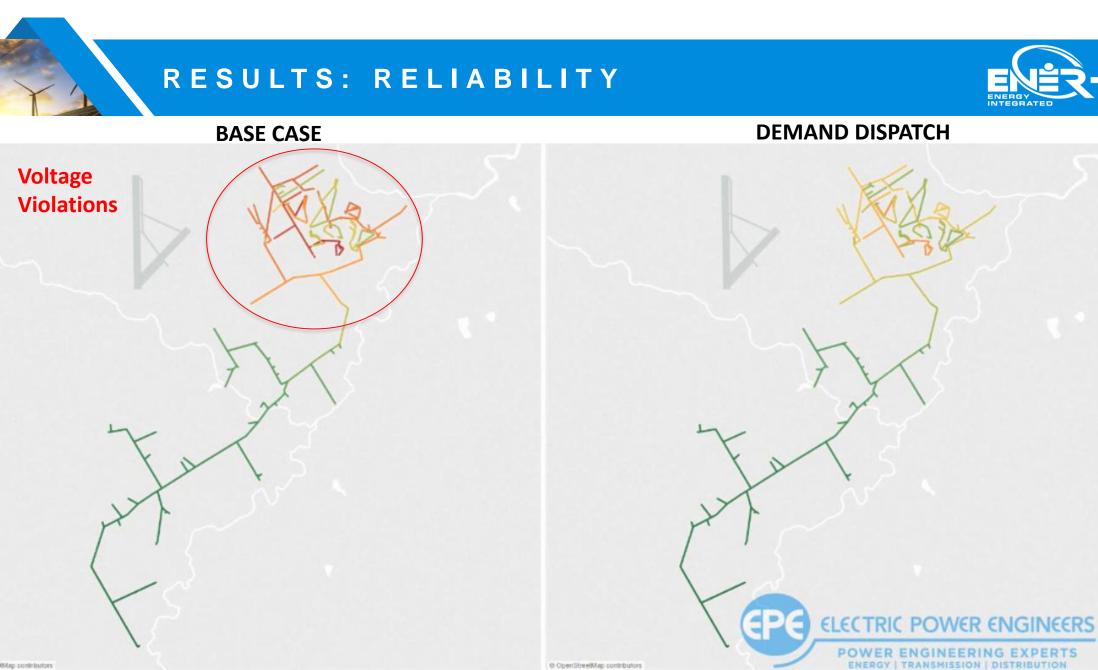
RESULTS: LOAD SHAPING

- 8% reduction in peak kW
- Significantly lower ramp rates
- Significantly smoother net load trajectory

10-year Economic Analysis 1 Feeder with 1,400 participating appliances	
Peak charge savings	\$448,540
Line loss savings	\$82,641
CapEx Deferral savings	N/A
Cost of implementing DD	\$104,850
Net savings \$426,331	

3/20/2019 ESIG Spring Workshop – Chase Lansdale

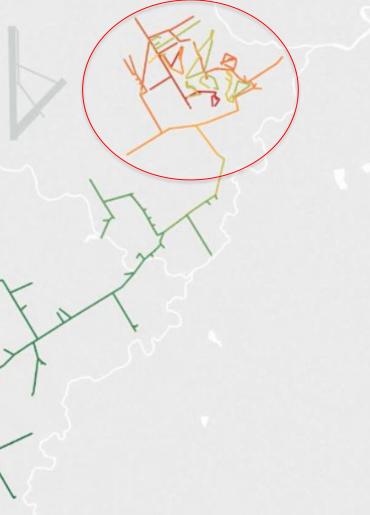

RESULTS: RELIABILITY



9 OpenStreetMap contributors

@ OpenStreetMap contributors

p OpenStreetMap contributors



RESULTS: RELIABILITY

BASE CASE

Deferred Capital Expenditures

Reliable Service to

Members

DEMAND DISPATCH

9 OpenStreetMap contributors

EPE

© OpenStreetMap contributors

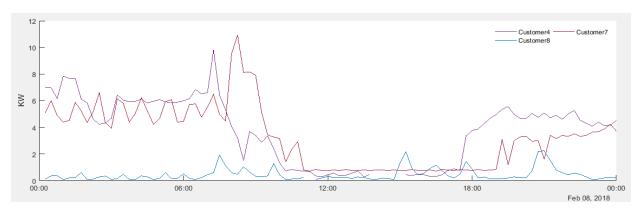
ELECTRIC POWER ENGINEERS

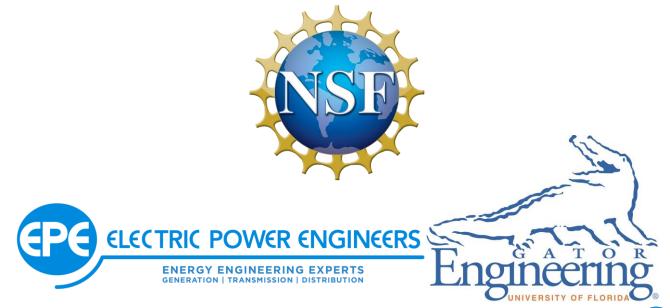
POWER ENGINEERING EXPERTS

ENERGY | TRANSMISSION | DISTRIBUTION

WHAT'S NEXT

Load Disaggregation


• Determine what appliances are being used and their traditional behavior


Localized Control Modeling

• Model each load's controller individually to better simulate real-world application

Field Testing + Pilot Project

- Implement controllers on real life systems
- Test different control signals and analyze load response in relation to traditional behavior

THANK YOU

www.epeconsulting.com

3/20/2019 ESIG Spring Workshop – Chase Lansdale

LATE EVENING READING MATERIAL!

- 1. Mathias J, Bušić A, Meyn S. "Demand Dispatch with Heterogeneous Intelligent Loads." *Proceedings of the 50th Hawaii International Conference on System Sciences*. 2017.
- 2. Chen Y, Hashmi MU, Mathias J, Bušić A, Meyn S. "Distributed control design for balancing the grid using flexible loads." *Energy Markets and Responsive Grids*, 2018 (pp. 383-411). Springer, New York, NY.
- 3. Hao H, Sanandaji BM, Poolla K, Vincent TL. "Aggregate flexibility of thermostatically controlled loads." *IEEE Transactions on Power Systems* 30.1 (2015): 189-198.
- 4. Cammardella N, Moye R, Chen Y, Meyn S. "An Energy Storage Cost Comparison: Li-ion Batteries vs Distributed Load Control." 2018 Clemson University Power Systems Conference. 2018
- 5. Cammardella N, Mathias J, Kiener M, Bušić A, Meyn S. "Balancing California's Grid Without Batteries." *57th IEEE Conference on Decision and Control* (CDC 2018). 2018 Dec.
- 6. Mathieu J, Dyson M, Callaway D, Rosenfeld A. "Using residential electric loads for fast demand response: The potential resource and revenues, the costs, and policy recommendations." *ACEEE Summer Study on Energy Efficiency in Buildings*. 2012.
- 7. Huber, L., Bachmeier, R., 2018. What netflix and amazon pricing tell us about rate designs future. Public Util. Fortnightly 60
- 8. Helen Loa, Seth Blumsack, Paul Hines, SeanMeyn, 2019. Electricity rates for the zero marginal cost grid.. <u>https://www.sciencedirect.com/science/article/pii/S1040619019300594?via%3Dihub</u>

