

Forecasting of DERs for Distribution Operations Session 2: DER Forecasting for Operations

David Larson, PhD Grid Operations and Planning, EPRI

June 13, 2023

EPRI Project Team

Mobolaji Bello mbello@epri.com

David Larson dlarson@epri.com

Miguel Hernandez

Jared Green

Lindsey Rogers

Supported by funding from:

Distribution utilities face varying levels of DER visibility

- Most utilities have "real-time" net load telemetry (SCADA, AMI)
- But few have DER production telemetry
 - especially for smaller DER (< 100 kW)
- Growth of DERs means DER visibility is becoming more critical for Distribution operations

Figure: Example load profile with DER.

3

Small DER in aggregate can have big impacts

But operators are more likely to lack visibility of small DER

Improved DER visibility can...

improve situational awareness

boost confidence on automated power restoration schemes (FLISR)

improve volt-var optimization (VVO) outcomes

increase accuracy of other advanced DMS functions

inform DER dispatch needs

enable the use of hosting capacity calculations

EPC

How to provide DER visibility in a cost-effective and scalable way?

Why short-term forecasting?

most DERs are solar photovoltaic (PV)

- solar forecasting is a mature technology
 - years of success in Transmission operations
 - commercially available
 - scalable to many locations
 - minimal data dependencies*

*specific data requirements vary between methods

Estimating PV production using gridded solar forecasts

Only need basic info on the PV sites (location, size in kW, etc.); no PV actuals required

EPRI

Case study with a Distribution utility in New York State*

- direct measurements of PV production from >70 sites
 - ~2-years at 15-minute resolution
 - DER-specific meters installed at each site
- forecasts from a commercial solar forecast provider
 - 2-years at 15-minute resolution
 - nowcast (<5-minute) to 7-days ahead
 - forecasts did not use any PV production data

Figure: Example of a DER-specific meter for measuring PV production. Image adapted from: connectder.com

*funding provided by NYSERDA

Takeaway #1: Forecast accuracy varies

*Here, "Forecast Bias" measures whether the forecasts tend to over-predict (positive bias) or under-predict (negative bias).

**Site-level is the forecast accuracy per PV site, whereas feeder-level is the aggregated of all PV on the same feeder.

Takeaway #2: Measurement data still helps

Measurements from a few sites can improve forecasts at all sites

Takeaway #3: Forecasts can help identify issues early

(1) Thermal limits based on forecasts

(2) Actual limits in real-time

Forecasts predicted a thermal limit issue, which was then observed in real-time

Where do we go from here?

How best to integrate DER forecasts into Distribution operations?

Sensors vs forecasts vs hybrid?

What about other types of DERs?

Probabilistic forecasts?

Public whitepapers on DER forecasting

EPRI Product ID: <u>3002022915</u>

EPRI Product ID: <u>3002021931</u>

5/18 Probabilistic & forecasts Britewolated values

Clear, transparent forecast evaluation tool

Together...Shaping the Future of Energy®