IBR Models and Modeling Needs

Deepak Ramasubramanian (<u>dramasubramanian@epri.com</u>) Technical Leader, EPRI

ESIG 2022 Fall Technical Workshop Minneapolis, USA October 25, 2022

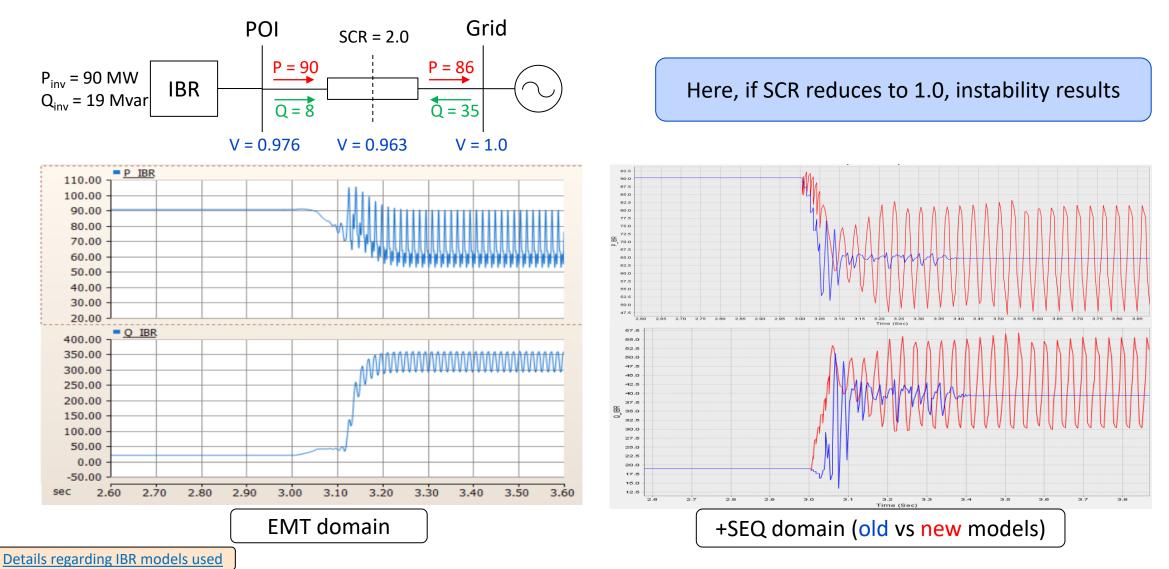
 ✓
 in
 f

 www.epri.com
 © 2022 Electric Power Research Institute, Inc. All rights reserved.

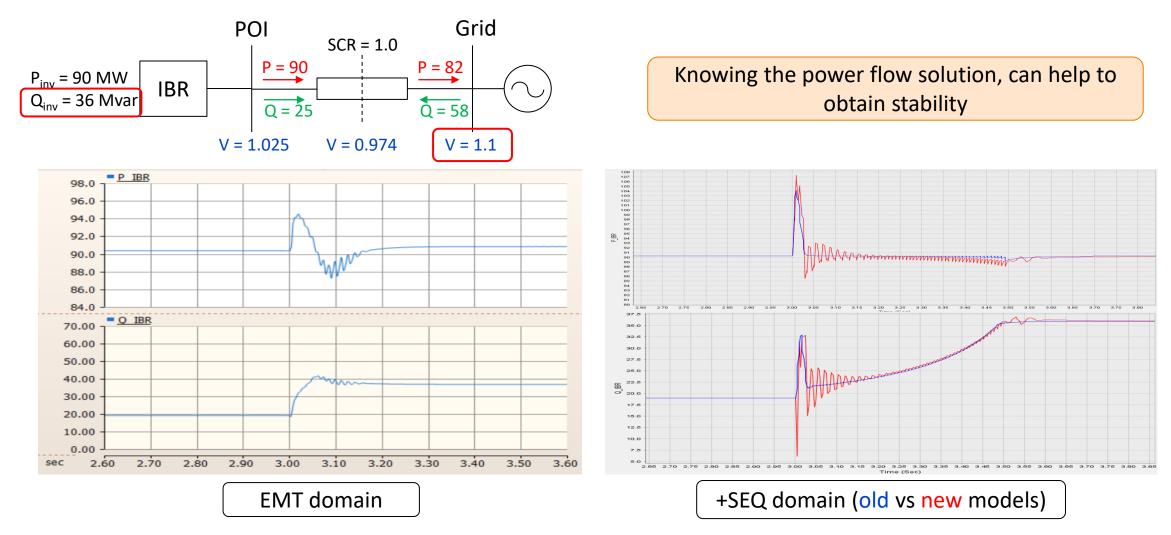
Power system simulations

- An objective of a simulation:
 - Get visibility and insight regarding dynamic characteristic response of a system
- How are dynamic characteristics represented?
 - Predominantly through use of differential equations that represent the rate at which quantities change.
- How is the above objective achieved?
 - Through integration of differential equations
 - Along with solution of algebraic equations (if present)

Objective of a model

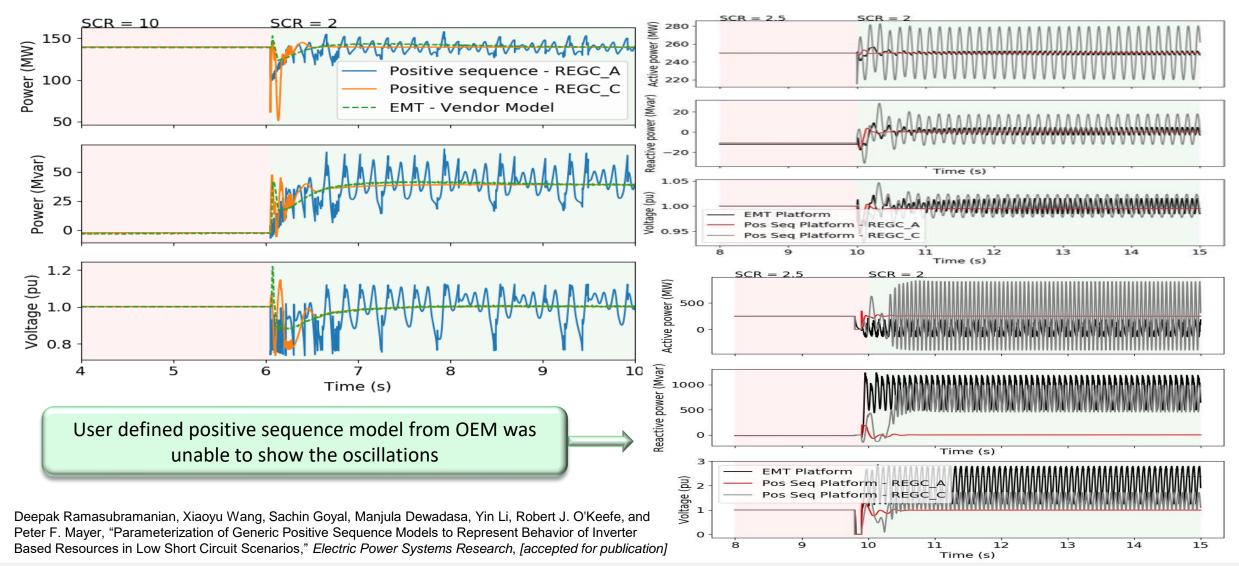

Provide a trend of response of dynamic behavior

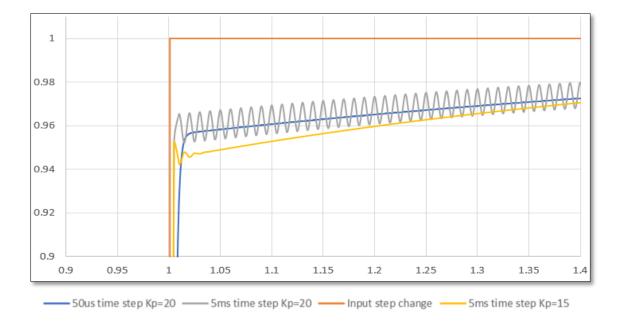
- Not advisable to have too strict/tight a set of expectations from a model
 - A lot of uncertainty is present when carrying out a simulation study


 Models across simulation domains may have nuanced differences in implementation in order to provide similar time domain response

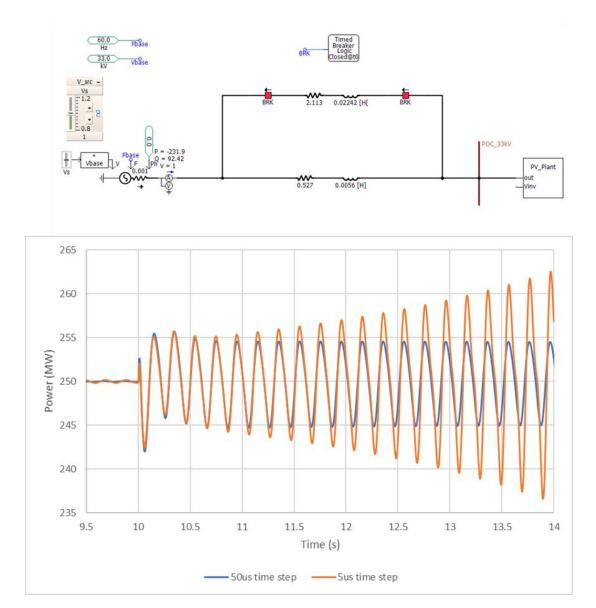
Consider an example of IBR and low short circuit scenario

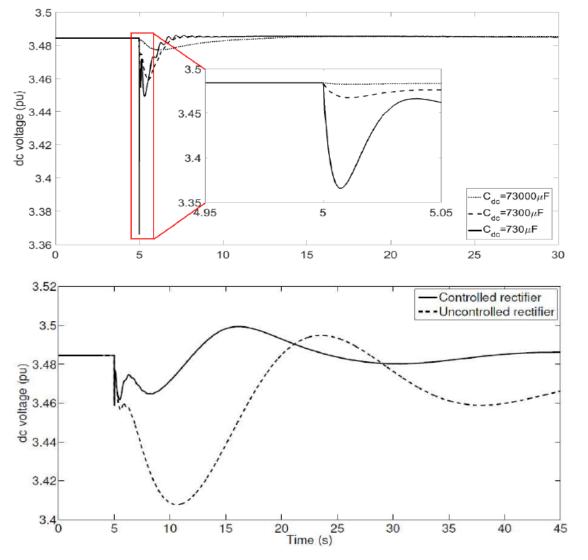
Consider an example of IBR and low short circuit scenario


New models still have more room for improvement


Representation of IBRs in simulation

- Every inverter for power system operation is a voltage source inverter
- State of the art interconnection wide simulations (generic and most UDM models available today) represent the inverter as a current source interface:
 - Assumes that current controller and PLL loops are fast
- Maybe we need all IBRs to be represented using a voltage source interface
 - Allows for greater accuracy and characterization of IBR dynamic behavior
 - Allows for representation of current controller and PLL loops


Beware false positive and false negative results from inaccurate models


Parameterization, integration method, and time step

- Value of time step of numerical integration can impact time domain dynamic response
- Method of numerical integration method can have an impact

Should we represent IBR dc side dynamics?

D. Ramasubramanian and V. Vittal, "Positive sequence model for converter-interfaced synchronous generation with finite dc capacitance," *IEEE Transactions on Power Systems*, vol. 33, no. 3, pp. 3172–3180, 2018

- It is possible to capture IBR dc dynamics in a positive sequence model
- Whether it is required to be captured in the model will be known only after detailed studies
 - Keeping in mind that most studies (including EMT) represent controls of one inverter/turbine, and scale appropriately

Model limitation versus simulation domain limitation

- Present models in planning base cases (both positive sequence and EMT) have been unable to capture causes of inverter tripping
- Limitation of a model should not be confused with limitation of the simulation domain itself
- Models (such as REGC_C and other future models) can help bring about added capability that can be leveraged

Cause of observed behavior	Simulation domain limitation	Most of today's model incorrectly parameterized	Most of today's model do not represent		Cause of observed behavior	Simulation domain limitation	Most of today's model incorrectly parameterized	Most of today's model do not represent	
Unbalanced conditions	✓				Unbalanced conditions		✓		
Sub-cycle ac over voltage	~				Sub-cycle ac over voltage		✓		
Sub-cycle ac over current	~				Sub-cycle ac over current		~		
Momentary cessation		✓			Momentary cessation		~		
Error in frequency measurement		~			Error in frequency measurement		~		Future model can represent
PLL loss of synchronism		\checkmark		Future model	PLL loss of synchronism		✓		as capability
Collector network level under frequency		~		can represent as capability	Collector network level under frequency		~		exists in simulation
Phase jump			✓	exists in simulation	Phase jump			✓	- domain
dc reverse current			✓	domain	dc reverse current			✓	
dc low voltage			✓	1	dc low voltage			~	1
Plant controller interactions			✓		Plant controller interactions			~	

(a) Positive sequence simulation domain

(b) EMT simulation domain

EPRI

Differentiating between Applicability of Simulation Domains and Inverter Mathematical Models in these Domains. EPRI. Palo Alto, CA: 2022.3002025063. [Online] https://www.epri.com/research/products/00000003002025063

Draft questions for positive sequence model quality check to characterize sufficiency of obtained model

To be discussed with industry and various stakeholders

		Yes/No	Comments				
RMS/Positive sequence model ¹							
1a	Is the model real code and is the same code used		List out any				
	in the EMT model?		sumptions/modifications				
			nade between EMT real				
			code and positive				
			sequence real code				
			including by-passing of				
			control elements)				
1b	Model should be represented using a voltage						
	source interface, even for conventional grid						
	following inverters ²	l					
1c	Model should have a representation of dynam						
	inner current control loop, if such a control () is		, i i i i i i i i i i i i i i i i i i i				
	represented in the EMT model of the inverte.						
1d	Model should have a representation of dynamic.						
	of phase locked loop, if such a control loop is						
	represented in the EMT model of inverter ³						
1e	If current output goes above may m current						
	limit, the model should be capal , 🤍 🕫 the						
	current to the limit at every time . v, wis						
	losing convergence with network stion						
1f	Document any change in values of p. meters						
	between EMT and RMS/positive sequer en els,						
<u> </u>	with explanation						
1g	Document any chain throl struct						
	(including by-par' g any c, rol path) be en EMT and RMS/ sitive segui ce models, v,						
1h	explanation a) vidation						
10	should not be prese. nore than 2time						
	steps						
1i	Mod capable erating in time						
-	st getween 10ms ⁴						
1j	2s the model r. sent the Lamics of the						
-1	ource behind the is ter and/or dynamics of the						
	bus?						
2 2022 Electrinet Research Institution to All rights reserved							

© 2022 Electr. er Research Institut nc. All rights reserved

³ Exclusion of this feature can be acceptable only if validation report is provided comparing response with EMT model at SCR levels between 1.0 – 2.5 for small signal and large signal events. Additionally, if representation of dynamics are included, they have to be more than a single first order time constant. ⁴ Use of higher values of time steps will depend on value of smallest time constant.

Challenges for new modeling practices

 OEMs may require new techniques to write/construct models in simulation software

Model validation techniques/guidelines may need more rigor

 Application of engineering judgement is extremely important when using models for simulation studies.

Together...Shaping the Future of Energy®