

Solar Eclipse – How did we do?

Santosh Veda,

Lead Engineer, Power Systems Engineering Center October 11, 2017

UVIG Fall Technical Workshop,

Nashville, Tennessee

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

- Project Overview
- Review of the Europe total eclipse
- Technical Approach
 - \circ GIS Study
 - Production Simulation Study
 - Data Analytics
 - Transient Simulation Study
- Summary

- Funded by DOE SETO
- Partnering with Peak Reliability
- Three Phases
 - Pre-Event: Estimate the impact on PV
 - Post-Event: Estimate impact on grid operations & PV
 Site Testing at NREL's NWTC (on-going)
 - Extend Framework for Future Events (to begin)
- Focus on developing tools and technical approach

August 21 Solar Eclipse

Source: https://svs.gsfc.nasa.gov/vis/a000000/a004300/a004314/eclipse2017usa_360p30.mp4

Review of the Total Eclipse in Europe

- Primary Recommendations
 - PV forecasts and output control
 - preparation of high-reserve
 - strategic use of pump storage power plants
 - \circ reduction of interchange between TSOs
 - strengthening of management and coordination across CE
- German TSOs and Terna (Italy) took special measures

Effects of Solar Eclipse on Grid Operations

- PV Output
 - \circ Utility-scale
 - Distribution-scale
- Loading Impact
 - Behavioral change
 - $_{\odot}~$ Transient cooling effect
 - Distributed PV
- Change in wind speeds
- Ramp rate considerations

- GIS Study
 - Determine size and location of PV
 - Estimate expected PV output on eclipse day
 - Estimate impact on PV output due to eclipse
- Production Simulation Study
 - $_{\odot}\,$ How will the interconnection respond to loss of PV
- Transient Simulation Study
 - Contingency studies and small-signal stability
- Data Analytics
 - Estimate impact from actual data

GIS Study – Determine PV Capacities

- Utility PV
- Distributed PV (Estimated 9.2GW)

Utility Area	Estimated Distributed PV Capacity (MW)	Utility Area	Estimated Distributed PV Capacity (MW)
APS	2160	PACE	57
BPA	109	PG&E	1513
El Paso	261	PSCO	101
IID	201	SCE	2016
IPCO	453	SDGE	522
LADWP	1077	Sierra	97
NM	449	WAPA	81
NVP	169		

GIS Study – Estimate expected PV output

- PV Output Estimation for Non-eclipse day
 - NREL's SAMPA to provide insolation profiles
 - Weather data from NSRDB supplemented by NASA's MODIS
 - NREL's System Advisor Model (SAM) and PVWatts used to calculate PV outputs
- PV Output Estimation for Eclipse day
 - NASA's obscuration profiles applied at each generator location

GIS Study – Estimated PV Output

Utility PV Cumulative WECC Generation

GIS Study – Estimated PV Output

Production Simulation Study

- PI data to determine area-level generation, reserves and interchanges
 - Days Selected for Benchmarking
 - August 21 Eclipse day (Monday)
 - August 14 Previous Monday
 - August 18 Friday before Eclipse
 - August 22 Day after Eclipse
- EMS case data to determine path-level and plantlevel flows

WECC Total Generation

WECC Total Reserves

WECC-level Generation by Fuel Type

Generation Trends by Fuel Type

- Merge operation case with planning dynamic models to perform transient study
- Study transient and small-signal stability using contingency analysis

- Eclipse event provided an opportunity to study PV penetrations
- Preparation undertaken by Peak Reliability and WECC utility members
- Tools developed for studying impact of wide-area phenomenon
- Framework being developed to incorporate the tools for future events