STOCHASTIC NODAL ADEQUACY PRICING (SNAP) PLATFORM

Richard Tabors Tabors Caramanis Rudkevich

ESIG Fall Workshop 12 October 2021

Traditional Probabilistic Resource Adequacy Assessment vs. SNAP

Traditional RAs

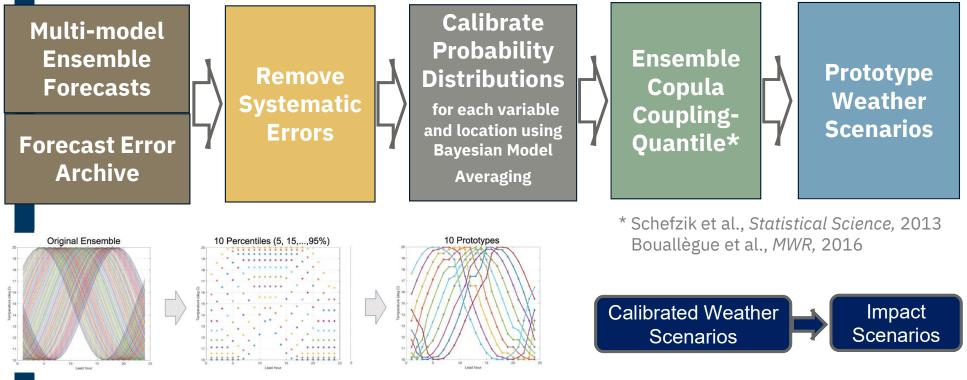
- Performed annually for future year(s)
- Use long-term forecast of weather conditions and load
- Run 1,000s Monte Carlo scenarios combining generation outages with a few dozen weather year scenarios
- Rely on highly stylized models of power systems:
 - Ignore most operational constraints and contingencies
 - Rely on pipes and bubble transmission models that ignore Kirchhoff Voltage Law
- Translate RA assessments into installed capacity requirements based on outdated metrics that do not have economic justification and not suitable for modern power systems
- Offer no metrics for assessing contribution of transmission to RA and make it virtually impossible to co-optimize generation and transmission investments
- Use the above to justify billions of \$\$ investments and cost recovery

SNAP

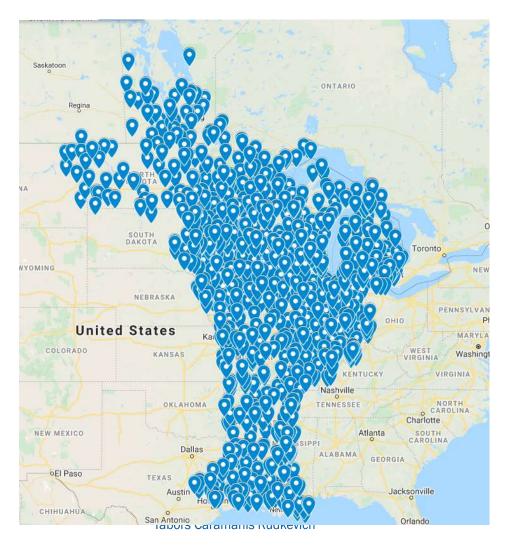
- Performed daily for the next 1 -3 5 days
- Relies on modern weather science and technology to generate 100+ probabilistic short-term weather forecasts (PFs) and uses probabilities that can be empirically validated
- Runs 10,000 100,000 Monte Carlo scenarios combining PFs with generation and <u>transmission</u> <u>outages</u>
- Relies on validated models of the MMS level of details that
 - use SCUC to factor in operational constraints and perform contingency analysis
 - Run SCOPF on physical network models
- Evaluates and monetizes contribution of each generation, demand-side and transmission asset to system adequacy
- Sends nodal economic signal to investors in generation, transmission and demand resources
- Effectively provides spot pricing for adequacy that is consistent with the physics of the system

Probabilistic Weather is a Primary Contingency

Creating a Probabilistic Weather Forecast


- 1. IBM/ The Weather Company utilizes 87 different numerical weather prediction models (and their ensemble members) as inputs to their forecast system
- 2. Ensemble members are generated by varying assumptions about initial conditions and model physics. Ensembles in their raw form tend to be biased, and under-dispersive
- 3. Corrects the raw ensemble member data using Bayesian model averaging to adjust for systematic errors (bias correction), and calibrate the distributions for each output variable individually (spread the dispersion)
- 4. Rearranges the individual values into the rank order structure of the raw ensemble to create 100 synthetic <u>weather system scenarios</u> through use of Ensemble Copula Coupling–Quantile technique
- The result is a probabilistic forecast wherein each of one hundred scenarios is equally likely
 - The predicted outcomes have been "spread" to deal with under-dispersion in the underlying weather models
 - The variables are internally consistent with each other in space and time (preserved the correlations among variables by preserving the weather system dependence template)
- Probabilistic forecasts are created on demand for hourly time steps out 15 days for any location.
 - Algorithms used to create synthetic probabilistic forecasts for hub height winds and solar from available probabilistically forecast parameters

"Prototype" Weather Scenarios


A probabilistically calibrated ensemble

On-demand set of calibrated, equally-likely "prototype" forecast scenarios for quantifying risk, uncertainty, or expected value in impact and outcome models.

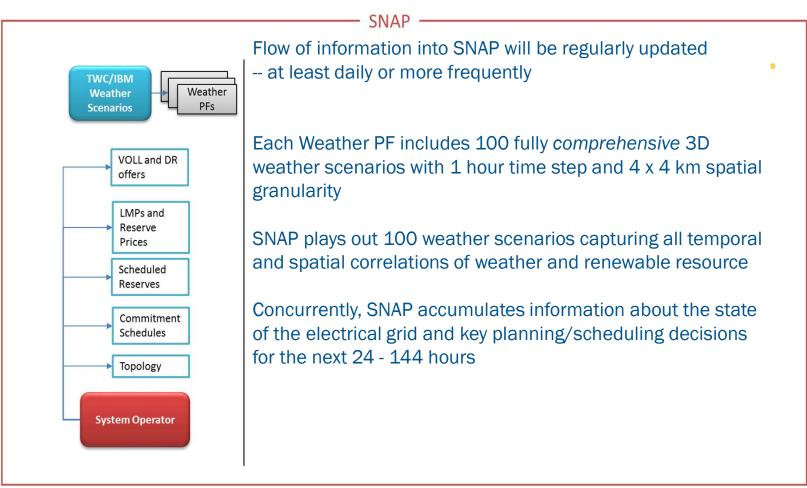
Copyright © 2019 IBM Corporation

Weather Data Locations

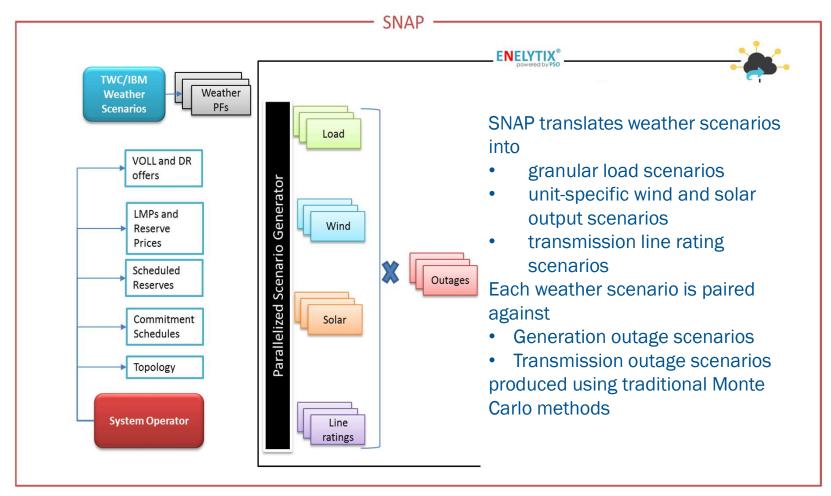

Over 2000 locations within MISO covering

- METAR weather stations
- Wind sites
- PV sites
- Cities and towns with population of 20,000 or more

SNAP Combines Weather Science with Power Systems Engineering and Economics Enhanced by Cloud Computing


SNAP Schematics

SNAP will be continuously reassessing system adequacy both physically and economically



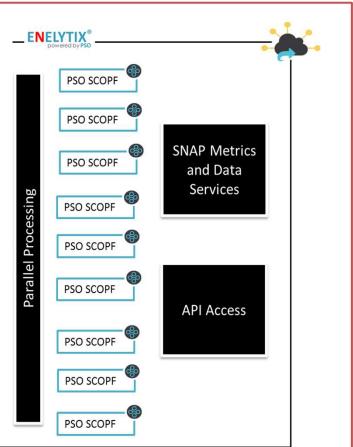
8

Tabors Caramanis Rudkevich

Tabors Caramanis Rudkevich

SNAP __ ENELYTIX Scenario inputs focusing on the next 24 – 144 hours of system operation will perform specific PSO SCOPF SCUC and SCOPF calculations to PSO SCOPF assess system adequacy at the nodal level and Compute hourly payments **SNAP** Metrics PSO SCOPF and Data by loads • Services to resources Parallel Processing PSO SCOPF Resources eligible for payments include -- generators and demand side resources which PSO SCOPF submitted offers to supply energy or reduce demand to the DA market PSO SCOPF **API** Access -- transmission facilities -- advanced technology solutions supporting PSO SCOPF system adequacy (e.g. smart devices, topology PSO SCOPF control) PSO SCOPF

SNAP


SCOPF calculations:

Objective Function: minimize production (bid/offer) cost of unserved load at VOLL

Generators offers as submitted Day-ahead Reliability Interruption Bids (RIBs) at offer levels as submitted into DA market (presumably below VOLL) SCOPF: 100,000+ Monte Carlo scenarios played out for each hour

-- If no inadequacy events occurs, scenario is noted. Scenario Nodal Adequacy Price (SNAP) is effectively zero at all locations

-- **if an inadequacy event occurs**, the event sets SNAP value at VOLL or RIB <u>at inadequacy</u> location. SNAP for all other locations is set using standard shadow price mathematics

T C R

SNAP	
ENELYTIX [®]	
Summary Metrics: Area level: EUE, LOLH, LOLE, Marginal Unserved Energy Nodal Level: Adequacy Price (AP) – expected value of SNAP at each location Resource Adequacy Payment (RAP) expected adequacy revenues (SNAP x MW delivered) accrued to the resource Load Adequacy Payment (LAP) – expected cost of serving load (SNAP x served MW) Transmission Adequacy Payment (TAP) – expected value of adequacy flows (delta SNAP x MW flow) of a transmission facility Adequacy Rent – the non-negative difference between the sum of all load payments and the sum of all resource receipts Adequacy Rent equals the sum of all TAPs Other nodal adequacy metrics specific for variable resources, storage, advanced transmission technologies (topology control, dynamic line rating) and demand resources	SNAP Metrics and Data Services API Access

Anticipated Benefits of SNAP

- Long-term benefits: saving in investments costs in generation and transmission
- Short-term benefits: reduced cost in scheduling operating reserves temporarily and locationally

For more information about SNAP

- Tabors Caramanis Rudkevich tcr-us.com
 - Contact Richard Tabors
- Newton Energy Group newton-energy.com
 - Contact Alex Rudkevich
- Polaris Systems Optimization psopt.com
 - Contact Russ Philbrick

