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Research Question

What is the value of light-duty electric
vehicle (EV) managed charging (EVMC)
to the bulk power system and how does
it vary with:

- SingIE'd ay VS. M U Iti_d ay erXibiIity Electric Vehicle.ManagedCharg.]ing:
. . Forward-Looking Estimates of Bulk
— Dispatch mechanism: Power System Value

Jiazi Zhang, Paige Jadun, and Matteo Muratori

e Direct load control (DLC)

e Real-time pricing (RTP)

* Time-of-use tariff (TOU)
— EVMC participation levels

What is the value in terms of bulk power s
sys’ger_n ensrgy’ Capacity, and avoided https://www.nrel.gov/docs/fy220sti/83404.pdf
emissIions:
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Methodological Finding: Energy and capacity bounds

of EV aggregations cannot be naively added

* Aggregation is needed
for EVs to participate in
wholesale electricity
markets (>0.1 MW), but
simple addition of
individual vehicle
flexibility overestimates
resource

 Why: A fully-charged
vehicle’s ability to
increase load can be
paired with another
vehicle’s ability to
accept more charge

Individual Vehicle Charging Schedules

100%

50%

EV, state of charge

0%

100%

50%

EV, state of charge

0%

37 Jowest

Lowest price
: ——

29 Jowest
——

Idle (plugged into charger)

4 8 12 16 20 24
Hour of week
Idle Lowest price 29 lowest 39 Jowest
- —l— ey
& / >
\ A

S
>
)

A Idle (plug)/ S

o £
S @>
\;z?/ <
@)

N/

4 8 12 16 20

Hour of week NREL | 3



Methodological Finding: Energy and capacity bounds

of EV aggregations cannot be naively added
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* Aggregation needed for
EVs to participate in
wholesale electricity
markets (>0.1 MW), but
simple addition of
individual vehicle
flexibility overestimates
resource

Aggregate state of charge
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Methodological Finding: Energy and capacity bounds

of EV aggregations cannot be naively added

/ ¢ o Infeasible request
owest price *oma ;
2009 Both Idle —_— to EV, at 2*pmax  3rd Jowes

150%

 Why: A fully-charged

vehicle’s ability to

increase load can be 100%

Aggregate state of charge

paired with another

vehicle’s ability to accept 4 209 Jowest price

y
0%

more charge
4 8 12 16 20 24

Hour of week

Aggregated Vehicles Charging Schedule
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Methodological Finding: Energy and capacity bounds

of EV aggregations cannot be naively added

Infeasible request

Lowest price
A

to EV, at 2*Pmax  3rd Jowest
—i—

150%

Aggregate state of charge

Feasible counterfactual
(dashed)

EV, request (dotted)

 Question: How feasible
is Direct Load Control?

Aggregated Vehicles Charging Schedule

Hour of week

100% vs. feasible
j; 29 lowest price
0%
4 12 16 20 24
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Tests show naive aggregation produces highly

infeasible charging flexibility requests

lllustrative results

Legend
Pmax: upward charging flexibility in

each time period Impossible to do better than [~
individual max by definition 7

dispatch to individual EVs
Revenue if aggregate request
was fulfilled

A‘* Three different objectives

pmax=100%, PMn=100%, S™"=100%

Pmin: downward charging flexibility | = | eiraranrarnn s s n e nan ey -
in each time period :: [ Max net revenue from )
Smin: max quantity of deferred load | = [individual vehicle In practice, even _
in each time period o | flexibility more infeasibility

> .
Red: Revenue under feasible re- ch) “Naive aggregation"*

3

)

Z

Error (%) NREL | 7



Feasible redispatch of aggregate managed EV

resource requires scaling power and energy bounds

Legend
Pmax: upward charging flexibility in
each time period
PMin: downward charging flexibility
in each time period
Smin: max quantity of deferred load
in each time period

Red: Revenue under feasible re-
dispatch to individual EVs

Revenue if aggregate request
was fulfilled

A‘* Three different objectives

Net Revenue ($)

lllustrative results

Max net revenue from
individual vehicle flexibility

‘ “Highest Net Revenue”
Pmax=509%, PMin=50%, SM"=100%

A “Low Error”

| P"*=50%, P™"=50%, S™"=50%

Finding: Feasible EV redispatch requires
scaling key parameters

Error (%)

NREL | 8



; ME, ME,
72% PEV (stock) 56% PEV (stock) 67% PEV (stock)
0.2% PEVsinNE 1% PEVsinNE  0.3% PEVs in NE

. County-level TEMPO™ simulations s iy
Stu dy Sett| ng capture demographic, vehicle type, ﬁ ﬁ i

Somerset, ME, Hancock, ME,
64% PEV (stock) 60% PEV (stock) 63% PEV (stock) 62% PEV (stock)
0.2% PEVsin NE 0.4% PEVsin NE 0.3% PEVsin NE 0.4% PEVs in NE

and weather heterogeneity  :_oa = A w8

0.3~
0.0-
Grand Isle, VT, Franklin, VT, Orleans, VT, Coos, NH, Androscoggin, ME,  Kennebec, ME, Lincoln, ME, Knox, ME,
57% PEV (stock) 57% PEV (stock) 69% PEV (stock) 65% PEV (stock) 54% PEV (stock) 55% PEV (stock) 62% PEV (stock) 56% PEV (stock)
0.1% PEVsin NE 0.3% PEVsin NE 0.2% PEVs in NE 0.3% PEVsinNE 0.7% PEVsinNE 0.8% PEVsinNE 0.3% PEVsinNE 0.3% PEVsin NE

Hourly operational model of an envisioned AN TN
2038 New England Power System

* Peakloadis 28.9 GW
(0.5 GW from EVs; compare to 25.8 GW in 2021)
e Within-ISO generation is 84% clean
(wind, solar, hydropower, biomass, nuclear)
¢ EVS are 45% Of Ilght_d Uty passeng er SR el foim ey ol e éﬁ%ﬁg
vehicle fleet (100% of sales); 80% of EVs A oA SA LA
are battery electric vehicles " s SR RS S0
SN WA SN N
Charging flexibility (V1G) estimated from D mmams 0 EREER S
101,000 sample vehicles’ charging profiles AR - o

0.0-
Kent, RI,
52% PEV (stock) 65% PEV (stock) 50% PEV (stock) 53% PEV (stock) 51% PEV (stock) 59% PEV (stock) 64% PEV (stock)

° Mobility service is preserved in all Mk comd - cod e

. 0.6- ﬁ w w
0.3-
scenarios ™
Fairfield, CT, New Haven, CT,  Middlesex, CT, ~ New London, CT, Washington, RI, Bristol, RI, Newport, RI, Dukes, MA, Nantucket, MA,

69% PEV (stock) 64% PEV (stock) 49% PEV (stock) 49% PEV (stock) 50% PEV (stock) 51% PEV (stock) 48% PEV (stock) 57% PEV (stock) 64% PEV (stock)
[ . . )
e Ubiquitous charging assumption
0.6-
2 N SN ./-A N U:A u-&

7.2% PEVSinNE 5.9% PEVSinNE 1% PEVsinNE 1.6% PEVsinNE 0.8% PEVsinNE 0.3% PEVsinNE 0.5% PEVsinNE 0.1% PEVsinNE 0.1% PEVsin NE
0.0-, OOUOOUY

0 68102468024 0 6802468024 0 68102468024 0 68102468024 0 68102468024 0 68102468024 O 68102468024 0 68102468024 0 68102468024
Hour of Day

Chittenden, VT, Lamoille, VT, ~Caledonia, VT, Essex, VT, Carroll, NH, Oxford, ME,  Sagadahoc, ME,
69% PEV (stock) 66% PEV (stock) 63% PEV (stock) 73% PEV (stock)  62% PEV (stock) 60% PEV (stock)  52% PEV (stock)
12% PEVSinNE 0.2% PEVsinNE 0.2% PEVSinNE 0.1% PEVsinNE 0.4% PEVsinNE 0.4% PEVsin NE 0.2% PEVs in NE

A AR R R A R

0.0-
Addison, VT, Washington, VT, Orange, VT, Grafton, NH, Belknap, NH,  Cumberland, ME,
59% PEV (stock) 57% PEV (stock) 62% PEV (stock) 56% PEV (stock) 55% PEV (stock) 63% PEV (stock)
0.3% PEVsin NE 0.4% PEVsin NE 0.2% PEVsinNE 0.6% PEVsin NE 0.4% PEVsin NE 2.2% PEVsin NE

R N AR A

0.0-

33
3

Rutland, VT, Windsor, VT, Sullivan, NH, Merrimack, NH, Strafford, NH, York, ME,
58% PEV (stock) 58% PEV (stock) 56% PEV (stock) 53% PEV (stock) 51% PEV (stock) 53% PEV (stock)
0.4% PEVsinNE 0.4% PEVsinNE 0.3% PEVsinNE 1% PEVsinNE 0.8% PEVsin NE 1.4% PEVsin NE

oS SN AN G

0.0-

3

Bennington, VT, Windham, VT, Cheshire, NH,  Hillsborough, NH, Rockingham, NH, MA,

PEV Charging Load Profile scaled for PEV stock (KW/PEV)
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Key Finding: Aggregating vehicles for direct load control

(DLC) comes at a feasibility cost

Estimated production cost savings for within-session aggregate
flexibility models with different scaling factors

Total Production Cost (Million $)

. Approx Overestimated Savings

Cost Type:
yp .Fuel Cost

B voam cost

Start & Shutdown Cost

Unmanaged EVs

Managed EVs

1500 ~

1000 ~

900 -

o
I

T T
W A
o o

T
N
o

sBuineg 1s09) uoIoNpoid

10 ~

o
(a101yen/$

Recall: Naive (“outer-approx”)
aggregations effectively assume
that one already-fully-charged
vehicle’s ability to increase load
can be paired with another
already-charging vehicle’s ability
to accept more charge.
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Key Finding: Individual vehicles responding to price works

for small numbers of vehicles, but is difficult to scale up

Charging profiles for the unmanaged case vs. vehicles responding to day-ahead energy prices
Energy prices were computed using the unmanaged profile as the EV load forecast (zero foresight of price-responsiveness)

15.0
=
0 12.5

(

© 10.0

~
&

ISONE EV Loa
N o
Ul O

0.0

N

Jan. 5, 00

Ramp Penalty ($/MWh)
emm» Unmanaged (Base) 0 - 100 = 1000 ”

Difficult/expensive to
serve large load spikes

SN2\

Smoothing response with
ramp penalty can help

Jan. 5,10 Jan.5,20 Jan.6,06 Jan.6,16 Jan.7,02 Jan.7,12 Jan.7, 22

This is an extreme example, but we also find that the bulk system value of 2% of vehicles responding to an RTP
is improved with a small ramp penalty ($1/MW for within-session and $10/MW for within-week).

NREL | 11



Key Finding: Highest per-vehicle value from low

participation, RTP

_ . _All-in value of production cost savings, capacity savings, and emissions reductions
The highest per-vehicle-year value is

produced at low participation rates
by individual vehicles responding to
real-time prices computed in the
day-ahead market

Per-vehicle value tops out at
about $10/month, and that does
not yet account for enablement
and incentive costs

Up to 1% of production costs and
nearly 2% of within-ISO emissions
can be avoided by about 2% of
the 2038 LDV fleet actively
participating in EVMC

Price-responsive EVMC is not
anticipated in the day-ahead unit
commitment problem in this
study (no foresight assumption)

Total per-vehicle Savings ($/veh)

Low Estimate

High Estimate

120 1

Within-week flexibility is about

80 - 70% more valuable than within-
é session flexibility
o+
0] ¢ A\
A e
¢ '
O_
0 1 2 3 4 0 1 2 3

Avoided Firm Capacity (% Net Peak Load)

DispatchType
« DLC
4+ RTP
TOU12
TOU44

+

PctParticipation
® 5

DelayType
* Session
* Week
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Key Finding: Higher participation levels require DLC and

mute the advantages of multiday flexibility

All-in value of production cost savings, capacity savings, and emissions reductions

Only direct load control provided

significant production cost savings Low Estimate High Estimate
for all participation levels. With low-
error DLC: 120 - A
R DispatchType
e Al EVs (45% of the LDV fleet) S * DLC
providing within-session flexibility = A * RTP
reduces production costs 4.4% P S
and within-ISO emissions 5.2% 2 80- PC:tPil’thlpatlon
>
% . @
e Al EVs (45% of the LDV fleet) o ® -
providing within-week flexibility 2 A K
reduces production costs 5.6% 2 o ® ’ 100
and within-ISO emissions 6.9% g 401 ‘ ® ® .. '
e ® ’ ' DelayType
e Within-week is 70% more 2 * Session
valuable than within-session " Week
flexibility at 5% participation with
RTP; For DLC, the within-week 0] | | | | _ | | | |
advantage is 20% at 30% 0 1 2 3 4 0 1 2 3 4
participation and drops to 17% for Avoided Firm Capacity (% Net Peak Load)

100% participation
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Summary of key findings

e Coordination of EVMC response is required starting at modest participation levels
and comes at a cost

* Highest per-vehicle value is achieved at low participation levels responding to time-
varying price

* Within-week flexibility is more valuable than within-session flexibility, but in our
study the effect is muted at higher participation levels

e If all EVs fully participate through a low-error DLC mechanism, we estimate total
system savings of:

Flexibility type Production Cost Power Sector Firm Capacity
Savings (%) Emissions Savings (%) | from EVMC (MW)

Within-session (single day) 4.4 5.2 780

Within-week (multi-day) 5.6 6.9 830

yielding per-vehicle value estimates of $25/vehicle-yr to $37/vehicle-yr.
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New Project: Managing Increased Electric Vehicle Shares on

Decarbonized Bulk Power Systems

Electricity prices

_______________________________________

+ I
TEMPO & EVI-X gs?l"d‘ﬂ:" - . !
Simulates vehicle adoption and Simsizzziite dalllia/ rzde U2 el ReEDS Capacity expansion, generation,
EV charging profiles; Generates can perform dispatch Simulates bulk power grid investments energy shifting, curtailment,
'
EVSE network SEMASS retirements, and operations system costs, value of EVMC
r
Washington County, VT e A é-‘ ° 6T NPV of Electricity System Cost
000, | A E% : mm Imports
i A b= PV+Battery 1 +22%
2 wel sz g™ / Distributed PV fanced .4
g I Month | =T i § E 4,000 (L7 T -0.8% -2.4%
3 ) 3I ! =" === Offshore Wind §
':'.m g o \ = § 3.000 : f’.;’:'r'.fmm““ Z e | .“.
[\ = =
£ 9 I & )
: ul TS TN r/\‘. I\\ i g & 2,000 - z?ggg:p s o 08
S0 R ﬂ/“l AN AN B 3 m— NG-CC e
. .Jj UM '.J \U\ = 1,000 = coal Current
' 05, <0y, <0, <0 <05, <o, L
g o, eqﬂ)":%)‘ :qf’)w,-)éq"”‘;:l"";& 020 2030 2040 2050 S High
[ 6 12 18 24 P T e T fw % Electrification Level
Hour of Day — Max — Baseline — Deferred — Flexible

Vehicle-level charging profiles for
ReEDs balancing authorities

Building on the completed The new multi-year project, sponsored by the DOE EERE Vehicle Technologies
project’s innovations around: Office (VTO), is extending the methodology to include:
« Single and multi-day * Capacity expansion modeling with EVMC as an investible resource

 Medium and heavy-duty vehicles
 Spatially resolved electric vehicle supply equipment (EVSE) and EV charging
* Fixed assets (e.g., EVSE scenarios) as management strategies

Nationwide, path-dependent impacts on bulk power system costs and related
metrics

charging flexibility

* Exploration of aggregation
and comparing direct control
to price responsive dispatch



Stay in touch!

Luke.lavin@nrel.gov
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Electric Vehicle Managed Charging:
Forward-Looking Estimates of Bulk
Power System Value

Elaine Hale, Luke Lavin, Arthur Yip, Brady Cowiestoll,
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General Problem Statement

Demand response is Increased solar and Additional balancing needs Demand response, ideally
a long-standing wind generation and a desire for less available year-round, can
source of POWer mcre:?\se.s.net-load carbon emissions at potentially shift demand from
system flexibility Var'ab'l'tY and affordable costs increases high- to low-price times and
uncertainty . .
interest in more forms of reduce renewable energy
demand-side flexibility curtailment

Resource Target
Individual Bulk power systems —
resources with What can aggregated electric vehicles generator plant
equipment @ contribute to power systems? capacities in MW,
capacities in system capacities in
kW GW NREL | 18



Research Question

What is the potential value of EV ISO New England (ISO-NE) PLEXOS Models Based on SEAMS
managed charging (EVMC) and how does 150.
it vary depending on: S O e B —-Load
* Flexibility type (within-session or é __________________
within-week) ~ 100- Curtailment
. . o o c ¥ Wind
Participation level (5% to 100%) 9 B SC e
e Dispatch mechanism (dire_ct load g . .ggg Boiler
control [DLC], real-time price [RTP], S S =cH;%0slr8c
time-of-use [TOU] rate) O M Biomass
. M Coal
This study: 0. B Nuclear
* Grid-to-vehicle (V1G) 2024 2038 2038 +EVs
* Constant mobility service Personal Passenger Light-Duty Vehicle (LDV) EV Charging from TEMPO
e Ubiquitous charging s z
)
e Technical potential (no costs for EVMC) 3 ,
e Case study in an envisioned ISO-NE in > -
2038 0

T T T T T T T T T T

<0 <0 <0 <0 <0 <0 <0 <0 <0 <0
7. 7. 7. 7. 7. 7. 7. 7. 7. 7.
205 R o5 Ros  Ros  Ros g Ry Ry, 72,
25 g 05 2, 08 .2 > . .

T T

2 2
07977 07 9\7

3 02 <0 0>

25 9‘74
Date (Hour Ending)



Analysis Approach

New high-resolution modeling capability

Energy prices

| |

TEMPO dsgrid-flex PCM (PLEXOS)
Simulates vehicle adoption Estimates flexibility il Snzulates b-UIk POWER
and EV charging profiles resource and can Flexibility Model Set gria operations Production costs, model
perform dispatch . M Term VG revenues, curtailment,
Washington County, VT I s beetle amount of shifted load
30091 fal Input Spreadshest . |:-:
= ¥ 000 '\g g sl E — . o FE"‘?E Flexible EV's
i Month —+ _ ‘,';é | v E 100- M Netimports ﬁ E E
= 3 - L |E M E M curtailment 57 z
52 sI i - o = Py gt 3
g | E M Wind o= 2
) ° I 7504 \ T Mapper PCM Inputs = GasCT EE 5
3 " . N 3 B Gas Boiler g — 1111 i
20 N A o 2 M o .
y v ! u Pumped hydro with = :mzl“ass CostType: M Fuel Cost [ Start & Shutdown Cost Il VO&M Cost
s Fong, Porg, Porg, Rag, eq, Porg, time-varying parameters e
0 6 12 18 24 Togy oy ”v@ g gy T8y, N
Hour of Day = ax == Baseline == Deferred == Flexible v —
Mo EVs  with EVs

Vehicle-level | T
charging profiles
for New England

Price-taking dispatch change in load
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EV Sales Share

Analysis Approach

All EV Sales by 2035 Adoption Scenario from TEMPO

EV Sales Share of Passenger Light-duty Vehicles (LDVs) for All
Counties in the Contiguous U.S.

100%

75%

50%

25%

0%

Vehicles

2020

12M

10M

8M

6M

aM

2M

2020

2030

New England LDV Stock

2030

Year

Year

2040

2040

2050

County Region
—— New England

—— Restof US

2050

Technology

Sales Share by Vehicle Type in New England

100%
75%
Technology
ICEV
50%
. PHEV
. BEV
25% I
-Illlll

0%
2020 2030 2040 2050
Year

Sales Share

2038 Scenario

* 5.3 million EVs

EVs are 45% of the LDV stock

80% of EVs are battery-electric vehicles (BEVs)
16.3 TWh/yr

3.79 GW unmanaged peak load
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State of Charge

Analysis Approach

Heterogeneous, vehicle-level modeling with TEMPO

County-level demographic and weather patterns

100%

80%

60%

40%

20%

0%

Vehicles
per capita

0.5 0.6 0.7 0.8 0.9

EV share of
vehicle stock

30%

40%

50% 60%

EVs

per capita

0.25 0.30 0.35 0.40

Sample-vehicle charging simulations

M Immediate
W Delayed
1 Min Charges & Delayed

Number of Charging
Sessions

Immediate 3
Delayed a3l
Min Charges & Delayed 2

0 10 20 30 40

As-early-as possible,
un-managed charging

Load Profile scaled for PEV stock (KW/PEV)

50

60

70

80 90
Hour of Week

100

110

120

130

140

v/

150

160

As-late-as possible for
within-session flexibility

As-late-as possible for
within-week flexibility

Grand Isle, VT, Frankiin, VT,
57% PEV (stock) 57% PEV (stock)
0.1% PEVsin NE 0.3% PEVs in NE

0.9-
0.6- ﬁ
0.3-
0.0-

Chittenden, VT, Lamoille,
69% PEV (stock)  66% PEV (stock)
1.2% PEVsinNE 0.2% PEVs in NE

09-
o,e-ﬁ
03-

0.0-

Addison, VT, Washington, VT,
509% PEV (stock) ~ 57% PEV (stock)
0.3% PEVsin NE 0.4% PEVs in NE

R AN

0.0-

o
o

Rutland, VT, Windsor, VT,
58% PEV (stock)  58% PEV (stock)
0.4% PEVsin NE 0.4% PEVs in NE

0.9-
0 6- ﬁ ﬁ
0 3-
5 o0o-
Bennington, VT, Windham, VT,
59% PEV (stock) 59% PEV (stock)

0.3% PEVsin NE 0.3% PEVs in NE

0.9-
06- M ﬁ
03-
0.0-
Berkshire, MA, Frankiin, MA,

53% PEV (stock) 52% PEV (stock)
0.8% PEVsin NE 0.5% PEVs in NE

0.9-
s N AN
0.3-
0.0-
Hampshire, MA,

68% PEV (stock)
1.1% PEVs in NE

09-
06- ﬁ
0.3+
0.0-
Litchfield, CT, Hartford, CT,

529 PEV (stock) 65% PEV (stock)
1.3% PEVs in NE 6.4% PEVS in NE

09-
0.6- ﬁ ﬁ
03-
00-

Fairfield, CT, New Haven, CT,
69% PEV (stock)  64% PEV (stock)
7.2% PEVsin NE 5.9% PEVs in NE

09-
0.6- M
bl fﬁ
00-,
0 6802468024 0 6802468024

Orleans, VT,
69% PEV (stock)
0.2% PEVs in NE

R

Caledonia, VT,
63% PEV (stock)
0.2% PEVs in NE

=R

Orange, VT,
62% PEV (stock)
0.2% PEVs in NE

SR

Sullivan, NH,
56% PEV (stock)
0.3% PEVs in NE

v

Cheshire, NH,
57% PEV (stock)
0.5% PEVs in NE

‘E&
3
'}

Worcester, MA,
67% PEV (stock)
6% PEVs in NE

)

3
)

Hampden, MA,
50% PEV (stock)
2.3% PEVs in NE

)
)

Tolland, CT,
50% PEV (stock)
0.9% PEVs in NE

b

Middlesex, CT,
49% PEV (stock)
1% PEVs in NE

‘s
}

Essex, VT,
73% PEV (stock)
0.1% PEVs in NE

IR

Grafton, NH,
56% PEV (stock)
0.6% PEVs in NE

R

Merrimack, NH,
53% PEV (stock)
1% PEVs in NE

13
'&

Hillsborough, NH,
62% PEV (stock)
3.1% PEVs in NE

Middlesex, MA,
71% PEV (stock)
11.4% PEVs in NE

Windham, CT,
53% PEV (stock)
0.7% PEVs in NE

3
)

New London, CT,
49% PEV (stock)
1.6% PEVs in NE

0 6802168024 0 68102468024

Season

09-
06-
03-
0.0-
Franklin, ME,

64% PEV (stock)
0.2% PEVs in NE

09-
0.6-§ A
0.3-

0.0-

Coos, NH,
65% PEV (stock)
0.3% PEVs in NE

=

Carroll, NH,
629% PEV (stock)
0.4% PEVs in NE

‘E

Belknap, NH,
550 PEV (stock)
0.4% PEVs in NE

¥

Strafford, NH,
51% PEV (stock)
0.8% PEVs in NE

Rockingham, NH,
58% PEV (stock)
2.3% PEVs in NE

Suffolk, MA,
66% PEV (stock)
3.4% PEVs in NE

Providence, RI,
50% PEV (stock)
3.1% PEVs in NE

Kent, RI,
51% PEV (stock)
1% PEVs in NE

Washington, RI,
50% PEV (stock)
0.8% PEVs in NE

)
3

0 68102468024
Hour of Day

wI
|

Androscoggin, ME,
54% PEV (stock)
0.7% PEVs in NE

o

Oxford, ME,
609% PEV (stock)
0.4% PEVs in NE

o

Cumberland, ME,
63% PEV (stock)
2.2% PEVs in NE

=

York, ME,
53% PEV (stock)
1.4% PEVs in NE

v

Essex, MA,
66% PEV (stock)
5.4% PEVs in NE

Vot

Norfolk, MA,
68% PEV (stock)
5.1% PEVs in NE

3

Bristol, MA,
599 PEV (stock)
3.6% PEVs in NE

S

Bristol, RI,
51% PEV (stock)
0.3% PEVs in NE

0 68102168024 0 6802468024

9 12

72% PEV (stock)
0.2% PEVs in NE

o —

Somerset, ME,
60% PEV (stock)
0.4% PEVs in NE

=N

Kennebec, ME,
55% PEV (stock)
0.8% PEVs in NE

o~

Sagadahoc, ME,
529 PEV (stock)
0.2% PEVs in NE

N

Plymouth, M,
64% PEV (s!ock)
3.7% PEVs in NE

N

Newport, RI,
48% PEV (stock)
0.5% PEVs in NE

\ﬁ

67% PEV (stock)
0.3% PEVs in NE

SR

Hancock, ME,
62% PEV (stock)
0.4% PEVs in NE

N

Knox, ME,
56% PEV (stock)
0.3% PEVs in NE

ME,
56% PEV (stock)
1% PEVs in NE

N

Waldo, ME,
63% PEV (stock)
0.3% PEVs in NE

=

Lincoln, ME,
62% PEV (stock)
0.3% PEVs in NE

A A

Bamstable, MA,
66% PEV (stock)
1.9% PEVs in NE

ﬁ

Dukes, MA, Nantucket, MA,
57% PEV (stock)  64% PEV (stock)
0.1% PEVsin NE 0.1% PEVs in NE

IR R

0 68102468024 0 68102468024



Analysis Approach

Nodal Production Cost Model with DC Powerflow

Isolated ISO-NE from the Interconnection Seam Study
(SEAMS) 2038 model

Analyzed resource adequacy and determined that more
generation capacity was not needed to support additional
EV load

Determined that additional transmission capacity was
required and checked our revised assumptions with ISO-
NE

Cost assumptions from SEAMS include regionalized 2038
fuel prices from the 2017 AEO and $45/metric ton CO,
(emissions costs are included in the dispatch objective),
all in 2016$

Un-managed EV load and realizations of EVMC in the real-
time (RT) model are represented regionally and
distributed to nodes with load participation factors

EVMC DLC is modeled in the day-ahead (DA) unit
commitment (UC) model as pseudo-storages, one per
dispatch zone

The DA model with un-managed EV charging is used to
create an 8,760-hour RTP signal; Two TOU rates are
constructed to mimic the RTP: TOU-1-2 and TOU-4-4

1. Northwest Vermont

3. New Hampshire
4. Seacoast

6. Bangor Hydro
7. Portland, ME
8. Western MA

9. Springfield, MA

NE-ME {

WCMASS -[

New England Dispatch Zones

1 - Approximate locations of
EVMC pseudo-storage units

10. Central MA 7+ WCMASS, cont.
by gcf::;f o } NEMASSBOST
13. SEMA

14. Lower SEMA } SEMASS

15. Norwalk-Stamford
16. Western CT
17. Northern CT ol

1 18. Eastern CT
# 19.Rhodelsland —— R|

Source: 150 New England



Aggregation: Inner and Outer

JA\ PP roximations Outer Approximation of
aggregate shiftability sums

individual power and
energy bounds

Sum of Individual Necessary

IN

Inner Approximations are
provably decomposable,
conservative estimates that can
be tuned to favor higher power
or higher energy capacity (or

. ) Concept described in, e.g., Hao et al. (2013)
something in between)
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Aggregation: Inner, Outer, and Scaled

Outer Approximations Outer Approximation is
typically an infeasible
overestimate of flexibility

Sum of Individual Necessar

<K

Sum of Individual Necessar

a*

Inner Approximations might ~
b k

significantly underestimate
resource
Scaled Outer Approximation can yield more
accurate representation of resource, but still O S a, b S 1
does not provide a feasibility guarantee

NREL | 25



Analysis Approach Simply Summing Power and Energy Bounds
Dee p d ive | nto agg regat Tela Overestimates Flexibility

e price

Price ($/MWh)

Dispatch Individual Vehicles within Power and
Energy Envelopes 270 280 290 300 310 320 330

Hour of Year

120 .
; 50
=
100 < 40
o
© 30
— ]
o
s 80 8 20
< o
8 60 g 10
N | I 3 o
> e |mmediate (S1) \— I g
i 40 . L . =N T x -10
——— Optimal within-session (Ss) A Y N I 270 280 290 300 310 320 330
——— Optimal within-week (Sy) 1 I Hour of Year
20 _ Delayed (S5 s) ‘_ ____] @ss» Optimal Individual Dispatch e Quter Approximation Upper Bound
MinCharges & Delayed (S5 w) Optimal Outer Approximation Dispatch ~ e==== Quter Approximation Lower Bound
- 2, W,
o 25 50 75 100 125 150 175 £° N\ ) —~
Hour of Week (June) s ;2 WA\ \/ \\‘
2 A
©-15
g -20 A \
@)
- —25
0]
= -30
()
T -35
o -40
270 280 290 300 310 320 330
Hour of Year
@ss» Optimal Individual Charge Deferral e Quter Approximation Lower Bound

Optimal Outer Approximation Charge Deferral



Analysis Approach

Deep dive into aggregation

. Approx Overestimated Savings Start & Shutdown Cost

. . Cost Type:
* Performed disaggregation YPS [ Fuei cost B vosm cost
experiments to
— Estimate scaling parameters Unmanaged EVs Managed EVs

that produce “low error (LE)” or
“maximum revenue (MR)”

— Estimate to what extent each
“scaled outer approximation”
overpredicts value

e Result of applying overestimated
savings results from price-taking
experiments to production cost
simulations shown here

* The report mostly focuses on DLC-
LE results, because the reported
performance should be feasible and
accurate without scaling

e DLC-LE scales all parameters by
50%; real-world aggregation should
be able to achieve more cost
savings/revenue (e.g., compare —-W
(LE) to —W (MR) in this plot)

1500 -

TN
o

T
W
o

1000 ~

T
N
o

500 ~

o
(a191yan/g) sbuiaeg 1s09 uoionpoad

I N N B N
—

7000/ 7000/ 7000/ 7000/ 7000/
*Dz.g, 2 D25, D25 > D2y, 7 Dz, 7 Dz,
(LE) (MR) == (04 (Lg) MR) "7 (04) \reL | 27

Total Production Cost (Million $)
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Analysis Approach . ” Ry
. ) ) . ) = 8000
Testing the Limits of Price-taking [
* Price-taking approaches are simpler than DLC, and % o
let vehicles respond directly with their full flexibility =~ © *%

* However, too much flexible EV load chasing the same

Jan. 05,00 Jan. 05,10 Jan.05,20 Jan.06,06 Jan.06,16 Jan.07,02 Jan.07,12 Jan.07,22

prices eliminates old, but creates new, price spikes Fm ey s
& Unmanage ase —
. 15.0
* Applying a penalty to aggregate ramps mutes <125 N
response %10_0
* Simply muting response is not a sufficient strategy 5 "
. .« . . w 50
at moderate to high participation rates 5 . m
Table 7. Optimal Ramp Penalties for the Price-taking Dispatch Mechanisms that Re- 00jan. 5,00 Jan.5,10 Jan.520 Jan.6,06 Jan.6,16 Jan.7,02 Jan.7,12 Jan.7,22
duce Production Costs by at Least $1/vehicle-yr. Combinations that do not yield suf-
ficient production cost savings for any value of ramp penalty are indicated with dashes. 150 @ Unmanaged (Base) Ra_mp 'Z,e”a“ﬂ“”fﬁ,?,’ —— 500 —— 1000
Participation  Within-session Within-week 312'5 N
(%) RTP TOU-4-4 TOU-1-2 RTP TOU-4-4 TOU-1-2  §'°
;‘ 7.5
5 1 10 1 10 10 1 S
30 100 100 - - - - 5 25
: %)
60 - - - y - - 0.0
1{}0 i i i 4 i i Jan.5,00 Jan.5,10 Jan.5,20 Jan.6,06 Jan.6,16 Jan.7,02 Jan.7,12 Jan.7,22
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Analysis Approach

Capacity value

* Previous work (Stephen, Hale, and
Cowiestoll 2020; Jorgenson et al. 2021)
identified average MW reduction of the top

. ==100% DZ-S (LE) == 100% DZ-W (LE)
Scenario: No EVs == Unmanaged EVs

100 net-load hours as a reasonable heuristic ,\22'5
for firm capacity %

e Capacity value is monetized using the 2021 ;';20'0
Cambium data set, specifically 2038 ISO-NE S 75
capacity prices under the Mid-case 95% B
decarbonization by 2035 and by 2050 < 50
scenarios z =

* On average, unmanaged EV load adds 1,620 8 125
MW to the top 100 hours of net-load in this '

0 25 50 75 100

system Hours of Year (Ordered)

e DLC-LE EVMC with 100% participation
reduces that amount by about half

NREL | 29


https://www.nrel.gov/analysis/cambium.html

Time-of-Use (TOU) Rates

Objective:

* Minimize difference in hourly revenue from day-ahead “real-time price (RTP)”
and TOU rate assuming load is fixed

Parameters:

* Number of seasons

* Minimum length of season (days)
* Number of blocks

* Minimum length of blocks (hours)
Methods:

e Optimization problem is a mixed-integer linear program derived by linearizing a
non-convex quadratic program—can solve for 1-2 months of data

* Initial value computed using agglomerative clustering—can be computed for
the whole year and in test problems (1-2 months) results in a better objective
value than the “optimal” solution

NREL | 30



How many season-hour blocks are
appropriate for TOU rates?

Seasons=4, Blocks=4 Seasons=4, Blocks=1

January 14
12

10

8

6

Day of Year (1-365)
cents/kWh

December -

OrANMTINONOONOHANMTLNONOO OrANMITINONOOOHANMTLNONOOO
e e R R R R Ko K Ry el b b e Ean R Ko Eap o

Hour Beginning Hour Beginning NREL | 31




Net revenue v MAPE tradeoff
(point size scaling of DPmax)

What is the trade-

DPmin_%Aggregate
100

50
off between A 20%DSmin 4+ 80%DSmin
ol ofe ® 40%DSmin X 100%DSmin
feasibility net- | m eovpsmin o %0
ithin- XX 80
reve.nue for W,Ithm _M_a_x_i_ngi_v_ngt_r_e_v_e_ny_e____i’_i’i___f_*_(____
session charging 0 Y + 70
delays . “gs W 60
o "um @ ]
= 20 "9 o
e 0 50
x® L] X+
< + xBll + 2K 20
. 10 - AA
The net revenue shown is 20
for the day-ahead
aggregate plan, which is 07 0 - - o 20
not actually feasible MAPE (%)
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Testing within-session delay scaled

outer approximations

Net revenue (buy/sell deviation) v MAE tradeoff
(point size scaling of DPmax)

DPmin_%Aggregate
100

 Larger scaling test on 559 600

vehicle charging profiles “High Net Revenue”
. . 500 - DPmax=50% 90
 DPmax scaling has little DPmin=50-60%
DSmin=100%
effect on revenue 200 | é w0
g e X g X
* Run a “low error” and o . ‘w’ff. m
“high net revenue” pointin £°°@R°, 4 70
= o
PLEXOS DA based on g Low Error” N
DPmMin and DSmin Sca“ng DPmax=50%, DPmin=50%, DSmin=50%
loo{ & semn 4 o 0
Feedback? @ 60%DSmin X 100%DSmin
B 70%DSmin @® Gross revenue of plotted point
0 T 40

0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00
MAE (MW) - avg resource dispatch=3.91 NREL | 33



Phase 2 — ongoing work




Potential Learnings: Price-responsive can Legend
“Best” dispatch mechanism
- (highest savings/lowest costs)
- “Worst” dispatch mechanism
(lowest savings/highest costs)

work at higher participation levels?

e Depends on management/forecasting approach for price-responsive load

e Results and participation rate ranges are largely illustrative; need to do research!
e Hypothesis: Randomization and incorporation of price-responsive EV load in load forecast can make price-
responsive dispatch (particularly TOU) preferable to DLC at higher participation levels than in Phase 1 work

In Phase 1, price-responsive only Eventually, resource is large
Hypotheses: preferable at low participation. Fixing In Phase 2, adding randomization, then perfect foresight allow price- enough that DLC is best, even

TOU44 makes it second-best? responsive TOU to remain preferable at higher participation levels?  though aggregation is imperfect?

l | l
f i | }
Dispatch Participation = 0-5% Participation = 5-30%? | Participation = 30-60%? Participation = 60-
Mechanism 100%?
pLC e 3 o

3

TOU44 2 2 3
rre I I
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