WFIP 2 Results

Improvements in Skill of NOAA'S RAP and HRRR for Wind Power Applications

Melinda Marquis
June 19, 2018

Disclaimer: The contents of this presentation do not necessarily reflect the views of NOAA.

Acknowledgements to NOAA ASRE Team

- Joe Olson
- Jaymes Kenyon
- Michael Toy
- Terra Ladwig
- Eric James
- Dave Turner
- Jim Wilczak
- Irina Djalalova
- Laura Bianco

- Katie McCaffrey
- Bob Banta
- Yelena Pichugina
- Aditya Choukulkar
- Tim Bonin
- Brandi McCarty
- Kathy Lantz
- Chuck Long
- Allison McComiskey

Outline

- Quick reminder about WFIP2 basics
- Weather model improvements for:
 - Warm season
 - Cold season
- Take home message: The systematic biases associated with westerly gap flows (e.g., marine pushes) and cold pool mix-outs have been reduced, with larger improvement in the latter.

RAP/HRRR/nest Configuration

Model Component	Control (Original)	Experimental (new)
LSM	RUC 9-level	RUC 9-level
Surface layer	MYNN	MYNN
PBL	MYNN level 2.5	MYNN-EDMF
SW Radiation	RRTMG	RRTMG
LW Radiation	RRTMG	RRTMG
Microphysics	Thompson Aero	Thompson Aero
Deep Convection	Grell-Freitas (RAP only)	Grell-Freitas (RAP only)
Shallow Convection	Grell-Freitas (RAP only)	MYNN-EDMF (all scales)
Horizontal Diffusion	Smag on sigma	Smag on X-Y-Z
Small-Scale GWD and Topographic Form Drag		Steeneveld et al. 2007 (JAMC) Beljaars et al. 2004 (QJRMS) (RAP and HRRR only)
Wind Farm Drag		Fitch et al. 2012 (MWR)
Vertical Coordinate	sigma	Hybrid sigma-P
Vertical levels	51 levels	51 levels

Instrument Layout

Instruments Deployed

- 11 wind profiling radars
- 17 sodars
- 5 wind profiling lidars
- 4 profiling lidars
- 4 radiometers
- 10 microbarographs
- 1 ceilometer
- 2 scanning radars
- 28 sonic anemometers
- 5 surface energy balance
- 1 SurfRad
- 2 RadSys

Westerly Gap Flow/Marine Push

Impact on July 2016 Reforecasts: 3km HRRR

Impact on July 2016 Reforecasts: 750m HRRRNest

Results for Warm Season

- The systematic biases associated with westerly gap flows have been slightly improved. For 12-13 July 2016 case:
 - The too-slow westerly gap flow at Wasco (~3 m s⁻¹) was increased by 0.5-1 m s⁻¹.
 - Other westerly gap flow events had similar improvements at night but neutral impacts during the day.
- Overall reductions in the MAE at Wasco, OR in July 2016:
 - 3km HRRR MAE reduced by ~15%
 - 750m nest MAE was not reduced
- The *mean errors* in the control version of the model were smaller in the summer than in any other season, making them much more difficult to improve upon.
 - In much of the daytime, the 80-m wind speed MAE was about 1.5 m/s.
 - That is going to be very difficult to improve upon.

Cold Pools

Impact on January 2017 Reforecasts: 3km HRRR

Impact on January 2017 Reforecasts: 750m HRRRNest

Forecast hour 15 Avg 40-140 m AGL

Control (750m) Experiment (750m) Wasco Sodar

Fcst hr 15 MAE Avg 40-140 m AGL

Control (750m) Experiment (750m) **Difference (E-C)**

MAE (750m):

Control

2.51

2.22

Experiment

Improvement 11.5%

Ɗay (Jan)

Results for Cool Season

- The systematic biases associated with cold pool mix-outs have been reduced.
 Results from the 13 Jan 2016 case show:
 - Cold pool at Wasco was 2-3 C cooler and wind speeds in rotor layer were reduced by 3-4 m s⁻¹.
 - Other similar cold pool mix-out events had similar improvements.
- Overall reductions in the MAE at Wasco, OR in January 2017:
 - 3km HRRR MAE reduced by ~25%
 - 750m nest MAE reduced by ~11%

Physics: WCO, WINDSPEED MAE_HRRR_EXP – MAE_HRRR_CNTR (4 six week Reforecasts) 00 UTC Runs only

Physics: WCO, WINDSPEED MAE_HRRRNEST_EXP – MAE_HRRRNEST_CNTR (4 six week Reforecasts) 00 UTC Runs only

Summary/Conclusions

• The systematic biases associated with westerly gap flows and cold pool mix-outs and have been reduced, with greater improvements in the winter than in the summer.

Back Up Slides

Reduction of large errors (>2 std. dev.)

Physics: TEMPERATURE MAE_HRRRNEST_EXP - MAE_HRRRNEST_CNTR (Winter Reforecasts)

Physics: TEMPERATURE MAE_HRRR_EXP - MAE_HRRR_CNTR (Winter Reforecasts)

Physics+Resolution: WINDSPEED MAE_HRRRNEST_EXP – MAE_HRRR_CNTR (Winter Reforecasts)

Physics+Resolution: TEMPERATURE MAE_HRRRNEST_EXP — MAE_HRRR_CNTR (Winter Reforecasts)

Wind Speed WCO improvement due to physics

Wind Speed WCO improvement due to resolution

Temperature WCO improvement due to physics

Temperature WCO improvement due to resolution

Evolution of Profile Differences at Wasco (3km domain)

Results: Marine Push of 12-13 July 2016

Mean (Westerly) Wind Speeds at Wasco

Average of all wind speed profiles with wind directions at 80 m AGL between 225 and 315 degrees during **July 2016**.

- Jet maxima are about the same strength
- New MYNN+SSGWD produce:
 - 1. More shear in the rotor layer
 - 2. Higher altitude of jet max

Turbine rotor layer