WFIP2 Decision Support Tools

Jim McCaa ESIG 2018 Forecasting Workshop June 19, 2018

Power forecasting and decision support tools

- WFIP2 largely focused on improvements to fundamental models
- Vaisala transformed output from the WFIP2 HRRR simulations to energy reforecasts using modern forecasting techniques
- Decision support tool work was based on the energy reforecasts
- We expect more subtle improvements to these energy forecasts than to the fundamental models

Decision Support Tools within WFIP 2

- How can we convey the possible impacts of complex phenomena?
- Can we create actionable alerts that will improve revenue?
- Example: Cold Pool Mix-Out
 - Stable cold pools act to shield the wind farms from higher momentum air aloft.
 - As the stable layer erodes, higher momentum air can reach the wind farms and a power up-ramp often results.
 - NWP models typically struggle to maintain cold pool resulting in over-prediction of power and false alarms for up-ramps

Credit: Joe Olson (NOAA)

Decision Support Evaluation

Contingency Table:

		Observed			
		Yes	No	Total	
Forecast	Yes	hits	false alarms	forecast yes	
	No	misses	correct negatives	forecast no	
Total		observed yes	observed no	total	

Cost/Loss Model:

Cost = expense associated with taking action

Loss = expense associated with event occurrence, but no action taken

Decision Support Evaluation

Reliability diagrams

ISAL

- Desire is for curve to lie close to the diagonal (calibration).
- This means that the observed events happen with about the same frequency as what the probability forecast predicts.
- Can be summarized by absolute mean or max departure of points from diagonal.

Credit: http://www.cawcr.gov.au/projects/verification/#Wilks_2001

Decision Support Evaluation

- (Economic) Value Score
 - The percentage improvement in expected economic value between climatological and perfect information, as a function of cost/lost ratio.
 - Value depends on the user's tolerance for false alarms
 - Can summarize the values score curve by two attributes:
 - Peak value score
 - Positive interval

Credit: http://www.cawcr.gov.au/projects/verification/#Wilks_2001

Decision Support Evaluation: All Up-Ramp Events

BPA Fleet Aggregate Power

VAISALA

1.0

0.8

Algorithm Design: Cold Pool Mix-Out

Label long-lived cold pool events and up-ramps

McCaffrey-Wilczak (2018) method, with criterion for stability, wind, duration WFIP1 Ramp Tool & Metric (min-max method), ≥ 15% of normalized capacity over 12 hours (BPA)

Find Overlap: Up Ramps + Cold Pool Mix-Out (Tolerance ± 1 hour)

Build Classifier Model

Result: A probabilistic forecast of up-ramps due to cold pool mix-out events

3

WFIP2 Ramp Event Frequencies

	All up ram	nps	Cold pool mix-out up ramps	
BPA Fleet Aggregate	# obs	ramp frequency	# obs	ramp frequency
	2952	27.5%	2952	2.4%

Decision Support Evaluation: Cold Pool Mix-Out

BPA cp-mixout_up-ramp_id

Prototype Tool

Industry Feedback: Summary

Prototype DST Tool Attribute	
Customized Probability Threshold for Tuning Ramp Alerts	 Best used by BA for reducing reserve requirements during low risk times Turning alerts on/off important Changing colors less so
Special Ramp Alerts By Phenomena Type	 Helpful for on-staff meteorologists, "pro" users Probably info overload for RT trader or BA operator Industry needs to figure out how to value this
Ramp Size/Duration Definition	 Pre-set thresholds (aligned with BA requirements) are preferred When/where (timing/level) of the end of down ramp event is more important Shorter ramp window is essential (focus is almost entirely on 1-hour ahead, not next 6 hours)
Potential Impact on Decision Making	 A useful education tool if both BA and owner/operators have same view Could target toward improved negotiation for reserve capacity Potentially useful tool if reserve costs could be dynamically input to help define actions

Special thanks to:

WFIP2 Decision Support Tools

Jim McCaa ESIG 2018 Forecasting Workshop June 19, 2018

