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Abstract. Can models that are based on deep learning and On the other hand, numerical weather forecasts are com- (a) (b)
trained on atmospheric data compete with weather and cli- putationally expensive and forecast quality reduces signifi- 1200 T T T T 1200 T T T T
mate models that are based on physical principles and the cantly already after a couple of days even in the best models Local NN —— Local NN ——
basic equations of motion? This question has been asked of- available. Most processes in the Earth system are described 1000 L GlObal NN — d 1000 - Global NN —— d
ten recently due to the boom in deep-learning techniques. by non-linear differential equations with non-linear interac- Persistence —— Local NN-7 2 fields ———
The question is valid given the huge amount of data that tions between Earth system components. Due to the com- 564 T21 forecast ———— = Global NN- 2 fields ——
are available, the computational efficiency of deep-learning plexity and size of the Earth system and the limited capacity = 800 | Oper. forecast E E 800 ? -
techniques and the limitations of today’s weather and climate of today's supercomputers, it is necessary to make approxi- E r
models in particular with respect to resolution and complex- mations when weather prediction models are formulated and 4] =
ity. resolution is truncated in space and time. The use of lim- g 600 7 g ouw q
In this paper, the question will be discussed in the context ited resolution makes it necessary to parameterise processes ‘5‘ =
of global weather forecasts. A toy model for global weather that are not resolved explicitly within model simulations. To :‘ 400 | i A 400 i
predictions will be presented and used to identify challenges optimise parameterisation schemes a large number of param- . :
and fundamental design choices for a forecast system based eters has to be tuned towards optimal model performance,
on neural networks. and the traceability of physical laws of the underlying pro- 200 - 200 b
cess as well as the physical interpretation for each parame-
ter is often lost during this exercise. Furthermore, to perform 0 1 | | | ‘ ) ) ) )
1 Introduction weather predictions, a huge amount of data need to be pro- 0 20 40 60 80 100 120 0 20 40 60 20 100 120

In recent years, artificial intelligence and machine learn-
ing have become very important for hardware development
in high-performance computing (HPC) and have attracted a
large amount of public interest. Neural networks (NNs) are
tools from machine learning that are used successfully within
many applications such as computer vision, speech recog-
nition and data filtering. If a sufficient amount of data are
available, NNs can be trained to describe the evolution of
non-linear processes. Due to the fundamentally application-
unaware character, no complete understanding of the under-
lying process is necessary. Very complex NNs can be trained
that use more than a billion trainable parameters and millions
of datasets for training on HPC architecture; see, for exam-
ple, Le (2013).

cessed and assimilated to create initial conditions. This is a
process that will again cause significant errors and uncertain-
ties. Only a rather small fraction of all observations can be as-
similated into state-of-the-art weather prediction models due
to the large computational cost and simplified assumptions
required such as vanishing error correlation.

NNs have been used to post-process data from weather
forecast models to optimise predictions; see, for example,
Krasnopolsky and Lin (2012) or Rasp and Lerch (2018). NNs
have also been used for radiation parameterisation in oper-
ational forecasts at ECMWE in the past (Chevallier et al.,
1998, 2000; Krasnopolsky et al., 2005) as well as for the pa-
rameterisation of ocean physics (Krasnopolsky et al., 2002;
Tolman et al., 2005) and convection (Krasnopolsky et al.,
2013). Recently, the representation of atmospheric sub-grid
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Figure 3. (a) Globally integrated absolute forecast error for the best local network (9 x 9 stencil), the global networlk, a persistence forecast,
an IFS forecast at TL21 resolution and the operational weather forecast of ECMWE. The persistence forecast shows a 12-hourly fluctnation
since Z500 has a weak 12-hourly cycle in the tropics due to atmospheric tides. (b) The same globally integrated absolute forecast error for
the best local and global network as in (a) plus the best results for local and global networks that use 2mT as additional prognostic field.
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a large 320-member ensemble
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4-day forecast for Hurricane Irma
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Sub-Seasonal Forecasting With a Large Ensemble of
Deep-Learning Weather Prediction Models
Jonathan A. W’eynl'3 , Dale R. Durran' (), Rich Caruana?® and Nathaniel Cresswell -Cla),r1

'Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA, *Microsoft Research, Redmond,
WA, USA, "Microsoft, Redmond, WA, USA

Abstract Wepresent an ensemble prediction system using a Deep Learning Weather Prediction
(DLWP) model that recursively predicts six key atmospheric variables with six-hour time resolution.

This computationally efficient model uses convolutional neural netwaorks (CNNs) on a cubed sphere grid
to produce global forecasts. The trained model requires just three minutes on a single GPU to produce

a 320-member set of six-week forecasts at 1.4° resolution. Ensemble spread is primarily produced by
randomizing the CNN training process to create a set of 32 DLWP models with slightly different learned
weights. Although our DLWP model does not forecast precipitation, it does forecast total column water
vapor and gives a reasonable 4.5-day deterministic forecast of Hurricane Irma. [n addition to simulating
mid-latitude weather systems, it spontaneously generates tropical cyclones in a one-year free-running
simulation. Averaged globally and over a twao-year test set, the ensemble mean RMSE retains skill relative
to elimatology beyond two-weeks, with anomaly correlation coefficients remaining above 0.6 through six
days. Our primary application is to subseasonal-to-seasonal (S2S) forecasting at lead times from two to
six weeks. Current forecast systems have low skill in predicting one- or 2-week-average weather patterns
at §2S time scales. The continuous ranked probability score (CRPS) and the ranked probability skill score
(RPSS) show that the DLWP ensemble is only modestly inferior in performance to the European Center
for Medium Range Weather Forecasts (ECMWF) S2S ensemble over land at lead times of 4 and 5-6 weeks.
At shorter lead times, the ECMWF ensemble performs better than DLWP.

Plain Language Summary The world's leading weather forecasting institutions currently
rely on computationally expensive weather models running on massive supercomputers. In order to have
predictive skill for forecasts two to six weeks in the future, large ensembles of many nearly identical runs
of these models are required, but the computational resources needed for these ensembles scales with the
number of forecasts run. Since the resources needed rapidly approaches modern-day computing limits,
we explore the possibility of using computationally cheap weather models based on machine learning
algorithms which learn to reproduce the evolution of weather. Our machine-learning model is capable
of running 320 forecasts in three minutes on a single workstation, while the state-of-the-art model from
the European Center for Medium-Range Weather Forecasts (ECMWF) utilizes supercomputers to run 50
forecasts. Our ensemble weather model produces realistic forecasts of weather events such as Hurricane
Irma in 2017 and is even capable of nearly matching the performance of the ECMWF ensemble for
forecasts of temperature four to six weeks in the future.

1. Introduction

‘Weather forecasting relies heavily on data assimilation to estimate the current state of the atmosphere and
on numerical weather prediction (NWP) to approximate its subsequent evolution. The skill of such deter-
ministic weather forecasts is typically limited to about two weeks by the chaotic growth of small initial
errars and inaccuracies in our approximate madels of the atmosphere. On much longer, multi-month time
scales, the coupling of the atmosphere with slowly evolving ocean-land forcing allows skillful seasonal fore-
casts of monthly or seasonally averaged conditions. Between these two extremes, the production of skillful
one- or two-week averaged forecasts at lead times ranging roughly between two weeks and two months
(the subseasonal-to-seasonal or $28 time frame) has proven particularly challenging; yet there are many
societal sectors that would greatly benefit from improved S2S forecasts (White et al., 2017). Several major
operational centers have developed NWP-based ensemble systems focused on improving S2S forecasting
(Vitart et al., 2017).
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* Built deep-learning-based convolutional
neural network ensemble system for S2S
forecasting.

* Requires 3 min to produce a 320-member
6-wk ensemble forecast

» Similar scores (CRPS and RPSS) for 4-wk
fx/ and 5-6-wk fx/ as ECMWF S2S
ensembles.
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Figure 13. Annual average RPSS skill maps for T; at weeks 5-6. Without bias correction: (a) DLWP ensemble, (b) ECMWF ensemble; with bias correction: (c)
DLWP ensemble, (d) ECMWF ensemble. The weighted global mean is noted at the lower left in each panel.
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data. It predicts hundreds of weather variables, over 10 days at 0.25° resolution globally, in under one
minute. We show that GraphCast significantly outperforms the most accurate operational deterministic

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao
Gu, and Qi Tians» Fellow. IEEE

systems on 90% of 1380 verification targets, and its forecasts support better severe event prediction,
including tropical cyclones, atmospheric rivers, and extreme temperatures. GraphCast is a key advance
in accurate and efficient weather forecasting, and helps realize the promize of machine learning for
madeling complex dynamical systems.

Keywords: Weather forecasting, ECMWE, ERAS, HRES, learning simulation, graph neural netwaorks

Abstract—In this paper, we present Pangu-Weather, a deep learning based system
for fast and accurate global weather forecast. For this purpose, we establish a data-
driven environment by downloading 43 years of hourly global weather data from the
5th generation of ECMWF reanalysis (ERA5) data and train a few deep neural
networks with about 256 million parameters in total. The spatial resolution of forecast
is 0.25° x 0.25°, comparable to the ECMWF Integrated Forecast Systems (IFS). More
importantly, for the first time, an

Al-based method outoerforms state-of-the-art numerical weather prediction (NWP)
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Prithvi WxC: Foundation Model for Weather and Climate
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ClimaX:
A foundation model for weather and climate

Tung Mguyen!, Johannes Brandstetter®, Ashish Kapoor®,
Jayesh K. Gupta*?, and Aditya Grover*!
YIMCLA, *Microsoft, *Scaled Foundations

Most state-of-the-art approaches for weather and climate modeling are based on physics-informed
numerical models of the atmosphere. These approaches sim to model the non-linear dynamics
and complex interactions between multiple variables, which are challenging to approximate.
Addicionally, many such numerical models are computationally intensive, especially when
modeling the atmospheric phenomenon at a fine-grained spatial and temporal resolution.
HRecent data-driven approaches based on machine learning instead aim to directly solve a
downstream forecasting or projection task by learning a data-driven functional mapping using
deep neural networks. However, these networks are trained using curated and homogeneous
climate dacasets for specific spatiotemporal tasks, and thus lack the generality of numerical
models. We develop and demonstrate ClimaX, a flexible and generalizable deep learning
model for weather and climate sclence that can be trained using heterogeneous datasets
spanning different variables, spatic-temporal coverage, and physical groundings. ClimaX
s~eemgly the Transformer architecture with novel encoding and aggregation blocks that allow
ive use of available compute while maintaining general wtility. ClimaX is pre-trained
a selfsupervised learning objective on climate datasets derived from CMIPG. The pre-
»d ClimaX can then be fine-tuned to address a breadth of climate and weather tasks,
{ing those that involve atmospheric variables and spatio-temporal scales unseen during
iining. Compared to existing data-driven baselines, we show that this generalicy in ClimaX
5 in superior performance on benchmearks for weather forecasting and climate projections,
when pretrained at lower resolutions and compute budgets. Source code is available at
offgithub. con/microsef t/Climak.
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i+ 1 ClimaX is built as & foundation model for any weather and climate modeling eask. On the weather
these tasks include scandard forecasting tasks for varions lead-time horizons at varfons resolutions, boch
Iy or regionally. On the climace frone, making long cerm projections and obtaining downscaling resalts
vwer resplution model outputs are standard tasks,
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How skilful are the latest ML-based weather forecasts?

First, the headline scores of the released ML-based models hold up to independent evaluation.
When assessed with deterministic scores, such as root mean square error (RMSE) or anomaly
correlation coefficient (ACC), Pangu-Weather is a legitimate rival for the IFS (see Figure 1 for
example). This holds true not only when assessed against analyses, but also against observations,
and when using the same initial condition as the IFS (as opposed to initialising from ERAS5, which is

done in the public papers).
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Figure 1: Root mean square error (RMSE) scores of 500 hPa geopotential height for IFS high-resolution
forecasts (HRES) and Pangu-Weather over Europe for winter 2022/23 at day 6, measured against
operational analysis. Pangu-Weather and the IFS produce comparably accurate forecasts and share a
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forecast “bust” near the end of January.
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Compare to ECMWF

European Centre for Medium Range Forecasting

However, scores can be optimised, and ML models are trained to do
exactly this. Pangu-Weather and FourCastNet were trained to
minimise RMSE. Training towards this type of objective can smooth
out predictions and it penalises forecasts of extremes. But of
course, weather forecasts are at their most valuable for extreme
events where lives are at stake.
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Figure 2: Average tropical cyclone track errors during 2018 for IFS high-
resolution forecasts (HRES) and Pangu-Weather, measured against
IBTrACS. The statistic is based on events having a tropical storm

strength of at least 17m/s, and bars highlight the 95% confidence
interval.



Does it Know the Dynamics?

Dynamical Tests of a Deep-Learning Weather

Prediction Model Sept. 2023

Gregory J. Hakim'and Sanjit Masanam?

IDepartment of Atmospheric Sciences, University of Washington, Seattle, WA
2Department of Physics, University of California at Santa Barbara, Santa Barbara, CA

Key Points:

The Pangu-weather deep-learning weather prediction model exhibits physically
realistic dynamical behavior

Steady tropical heating produces a Matsuno—Gill response in the tropics, and plan-
etary waves that radiate into the extratropics

Localized initial conditions produce realistic hurricanes, extratropical cyelones, and
adjustment to geostrophic balance

We conclude that the model encodes realistic physics in all
experiments, and suggest it can be used as a tool for rapidly testing
ideas before using expensive physics-based models.

Figure 3. Sclution at 500hPa for a localized disturbanee on the DJF atmeosphere. The full
geopotential height is shown by gray lines every 60m, and anomalies from the DJF average by
red (positive) and blue (negative) lines every 20m; the zero contour is suppressed. Green ar-
rows show the anomalous vector wind. Solutions are shown at (A) 0 days (the specified initial
condition); (B) 2 days; (C) 3 days; and (D) 4 davs.



Can AIWP be Trained from
Observations?

DATA DRIVEN WEATHER FORECASTS TRAINED AND
INITIALISED DIRECTLY FROM OBSERVATIONS

A PREPRINT
Anthony McNally Christian Lessig Peter Lean Eulalie Boucher Mihai Alexe
Ewan Pinnington Matthew Chantry Simon Lang Chris Burrows Marcin Chruost
Florian Pinault Ethel Villeneuve Niels Bormann Sean Healy

European Centre for Medium-Range Weather Forecasts (ECMWEF)
ECMWF - July 2024

July 23, 2024

(d) SYNOP surface measurements of 2m temperature and
10m wind

(c) AVHRR visiblke reflectances

Figure 1: Typical examples of the data coverage provided by ATMS microwave radiances (a), IASI infrared
radiances (b). AVHRR visible reflectances (c) and SYNOP surface measurements of 2m temperature and 10m wind
(d) within a 12-hour window.

predicted SYNOP 10m wind 09 UTC predicted SYNOP 10m wind 18 UTC

Predicted

Observed

Figure 5: Example of 10m winds inferred from satellite brightness temperatures alone. Predicted SYNOP 10m wind
(upper panels) and verifying target SYNOP 10m wind (lower panels) at 9UTC and 18UTC for a case on February
18th 2022.



TESTING THE LIMIT OF ATMOSPHERIC PREDICTABILITY WITH A
MACHINE LEARNING WEATHER MODEL

A PREPRINT

P. Trent Vonich "' and © Gregory J. Hakim ™
IDepartment of Atmospheric Sciences, University of Washington, Seattle, WA, USA
2Air Force Institute of Technology, Wright-Patterson AFB, OH, USA

April 30, 2025

ABSTRACT

Atmospheric predictability research has long held that the limit of skillful deterministic weather
forecasts is about 14 days. We challenge this limit using GraphCast, a machine-learning weather
model, by optimizing forecast initial conditions using gradient-based techniques for twice-daily
forecasts spanning 2020. This approach yields an average error reduction of 86% at 10 days, with
skill lasting beyond 30 days. Mean optimal initial-condition perturbations reveal large-scale, spatially
coherent corrections to ERAS, primanly reflecting an intensification of the Hadley circulation.
Forecasts using GraphCast-optimal initial conditions in the Pangu-Weather model achieve a 21%
error reduction, peaking at 4 days. indicating that analysis corrections reflect a combination of
both model bias and a reduction in analysis error. These results demonstrate that, given accurate
mitial conditions, skillful deterministic forecasts are consistently achievable far beyond two weeks,
challenging long-standing assumptions about the limits of atmospheric predictability.




Newsletter = AIFS: a new ECMWEF forecasting system

Number 178 - Winter 2024 Simon L:ang, Mihai tb.lexe, Matthexfu Chantry,.Jesper Dramsclh, . Florlan.PlnauIt,
Baudouin Raoult, Zied Ben Bouallégue, Mariana Clare, Christian Lessig,

Published in January 2024 ! ] !
Linus Magnusson, Ana Prieto Nemesio

ECMWEF has taken the Artificial Intelligence Forecasting System (AIFS) into
operations today, 25 February 2025, to run side by side with its traditional
physics-based Integrated Forecasting System (IFS) to advance numerical
weather prediction.

The AIFS outperforms state-of-the-art physics-based models for many
measures, including tropical cyclone tracks, with gains of up to 20%.

This high-accuracy model complements the portfolio of our physics-based
models by leveraging the opportunities made available by machine learning
(ML) and artificial intelligence (Al). These include increased speed and a
reduction of approximately 1,000 times in energy use for making a forecast.
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ARTIFICIAL INTELLIGENCE FORECASTING SYSTEM (AIFS) CECMWF
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1. Observe 2. Absorb 3. Model 4. Predict

Now: AIFS Single one
forecast at a time
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AIFS forecast skill. We show the northern hemisphere Anomaly Correlation Coefficient (ACC) for CRE fia Srriies

geopotential height at 500 hPa of IFS forecasts (red, dashed) and AIFS forecasts (blue) for 2022, Higher
values indicate better skill.

https://www.ecmwf.int/en/about/media-centre/news/2025/ecmwfs-ai-
forecasts-become-operational

https://www.ecmwf.int/en/about/media-centre/news/2025/ecmwfs-ai-forecasts-become-
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What is NOAA Doing?

An early look at NOAA’s Project EAGLE to accelerate
Al weather prediction advances for the United States

1 June 18, 2025
Authors: Sergey Frolov, Jun Wang, Isidora Jankov, Jacob Carley, Keven Blackman, Daryl Kleist,

Travis Wilson, Linlin Cui, John Ten Hoeve and Maoyi Huang

Today we are sharing some early progress on Project EAGLE (Experimental Al Global and Limited-
area Ensemble forecast system), which is a joint effort between NOAA Research Laboratories and
the Earth Prediction Innovation Center (EPIC) in the Office of Oceanic and Atmospheric Research
(OAR), and the National Weather Service (NWS).

Wind Direction (particles)

N

Today EAGLE includes two components: Global-EAGLE-Solo and Global-
EAGLE-Ensemble. Both of them are based on Google DeepMind’s
GraphCast model (Lam et al., 2023) and are tuned by the NOAA
Environmental Modeling Center (EMC) using NOAA data. The model runs
on a 0.25-degree latitude-longitude grid (about 28 km) and 13 pressure
levels. The model produces 16-day forecasts 2 times a day at 00Z and 12Z.
*Global-EAGLE-Solo: A demonstration environment for “deterministic”
models that are initialized from a single GFS initial condition (IC). It is a
complement to the existing NOAA GFS physics-based forecast. NOAA EMC
re-trained the GraphCast model using Global Data Assimilation System
(GDAS) data as inputs and training targets (Tabas et al., 2025).
*Global-EAGLE-Ensemble: A demonstration environment for ensemble
forecasts, driven by the ICs of the operational GEFS. It is a complement to
the existing NOAA GEFS physics-based ensemble forecast system. The
weights for the Global-Eagle-Ensemble members are generated by fine-
tuning the original GraphCast weights from DeepMind(c) with recent
NOAA operational GDAS analysis. The resulting weights are effectively
trained on the combination of European Centre for Medium-Range
Weather Forecasts’s (ECMWEF) fifth-generation reanalysis (ERA5), ECMWF
high-resolution (HRES), and NOAA GDAS analysis. Multiple checkpoints
were saved to form 31 global ensemble members (Wang et al.,
2025).
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NSF NCAR Framework: CREDIT

What is CREDIT? Datasets

: Community
developing and deploying Al weather and Model

Earth system prediction models.

Graph

Models
CREDIT enables users to build custom
data and modeling pipelines to load data,

train configurable Al forward models, and

deploy them for real-time forecasting, Physics

hindcasting, or scenario projections. Mass Energy Moisture
Conservation Conservation Budget

CREDIT offers both scientifically validated

model configurations and endless //y’(‘?”m
customization for any use case. HHR \K(\\\K

Recurrent
Transformer
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What about at finer Scales?

Geophysical Research Letters Univ OK — Mar 2023,
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(NWP) systems but run much more quickly is a burgeoning area of research. Most AI-NWP models, however,
have been trained on global ECMWF Reanalysis version 5 data, which does not resolve storm-scale evolution.
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NSF NCAR Digital Twins

Urban Scale
Haupt, Dettling, Brummet, Sha, Kosovic, Boenert,...
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Bringing it Together for New Generative Platform
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Summary:

- Machine Learning has become a necessary
component of modern applications in
weather forecasting.

AIWP is revolutionizing weather prediction.
It’s all very new and we’ll need to understand

the full picture.
The prospect for the future is bright.
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