

GE 12-MW Turbine Nacelle – 2019

Turbines for Offshore Wind Projects

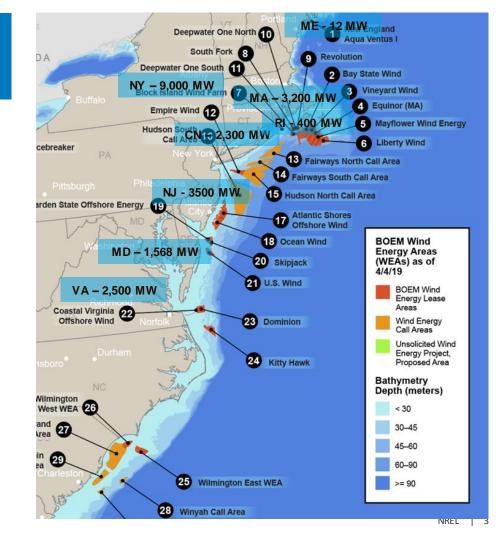
Walt Musial

Principal Engineer - Offshore Wind Platform Lead National Renewable Energy Laboratory Golden, Colorado

2019 FALL TECHNICAL WORKSHOP

October 28-30, 2019 Hilton Charlotte Center City Charlotte, NC

Offshore Wind – Global Industry Current Status

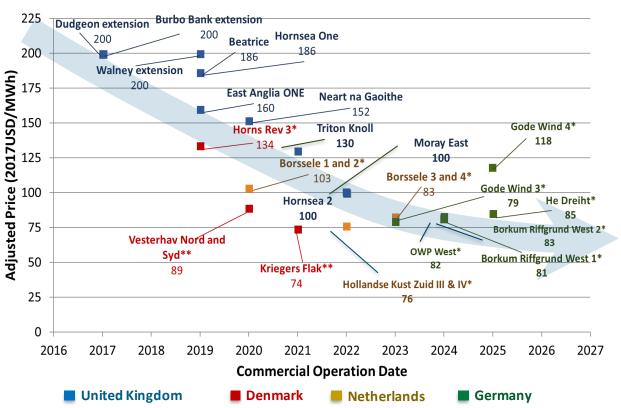


- 176 projects, over 22,592 MW installed (end of 2018)
- Typically fixed bottom support structures in shallow water (<50 m)
- Current Installed Turbine capacity 6.0 9.5 MW
- Upwind rotors 150 m 170 m diameter
- Tower height 25-m plus rotor radius (min)
- Drivetrain Direct drive or geared with medium speed generators
- Capacity factors up to 55 percent
- Average capital cost \$4,350/kW in 2018, declining to below \$3,000/kW by 2030
- O&M cost higher than land-based
- Leverages and expands opportunities for existing mature marine industries:
 - Offshore oil and gas
 - Submarine cable
 - Marine operations

U.S. State Offshore Wind Policy Commitments

- 22,480 MW* committed from 8 states by 2035 (and growing)
- 13,956 MW* committed by 2030
- \$80 Billion in gross revenue possible
- Regulatory project pipeline for U.S. is calculated at 25,824 MW
- No studies to determine the grid's capacity to inject this amount of power

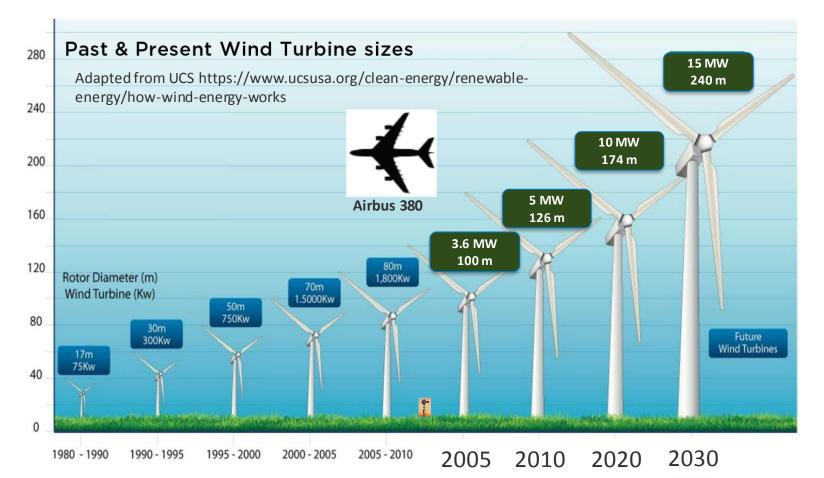
* increased by 2,500 MW from August market report after VA Gov. Northham's Executive Order in Sept 2019



Adjusted Strike Prices from European Offshore Wind Auctions

Data reflect estimated levelized revenue based on winning bids and expected wholesale power market revenues

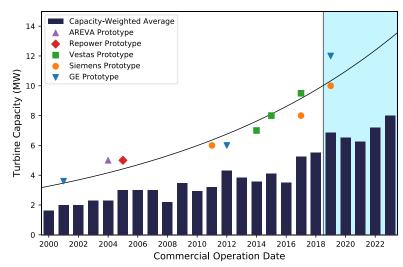
Why are prices coming dow n?


- Technology improvements larger turbines bring lower project costs
 - Shorter array cables
 - Fewer foundations
 - Lower maintenance
- □ Larger project sizes (1000-MW)
- Lowerrisk lower cost financing
- Maturing supply chains in Europe
- Increased competition

Notes: *Grid and development costs added; **Grid costs added and contract length adjusted

Sources: NREL Spatial Cost Model; BNEF 2017 (German price projections); PBL Netherlands Environmental Assessment Agency (2018) (Dutch price projections)

Offshore Turbine Growth – What are the limits?

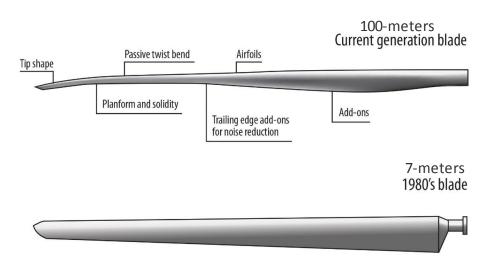


Upscaling Requires Continued Technical Innovation

- Advanced light-weight materials
- Advanced controls to limit loads and protect vital systems
- High-fidelity design and analysis tools
- Material and manufacturing innovations
- Automated service and logistics
- Remote diagnostics and robotic repairs
- Industrialization of the supply chain

New Turbine Prototypes Foretell Continued Turbine Growth

- General Electric announced the 12-MW Haliade-X turbine prototype now being installed in Rotterdam to be on the market in 2021. The turbine is first in class, with a 12-MW direct-drive generator, 220-m rotor, and 140-m hub height.
- Siemens Gamesa announced the SG10.0-193 DD turbine—a 10-MW direct-drive turbine with a 193-m rotor—which is planned to be ready for market in 2022.

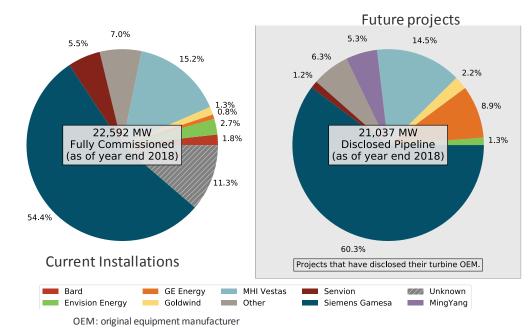

Average Commercial Offshore Turbine Growth With Prototype Development Leading Further Growth Source: DOE 2018 Market Report

GE 12-MW Wind Turbine Nacelle – Haliade -X

Photo Source: Greentech Media: https://www.greentechmedia.com/articles/read/ge-finishes-first-nacelle-for-12mw-haliade-x-offshore-wind-turbine#gs.xpxkf6

Characterizing the structural, aerodynamic, and hydrodynamics of offshore systems with advanced materials at commodity prices

Source: NREL; based on a graphic from Kenneth Thomsen, formerly Siemens Gamesa Renewable Energy.



GE Haliade 12-MW 107-meter Blade Prototype – Longest Blade Ever Built

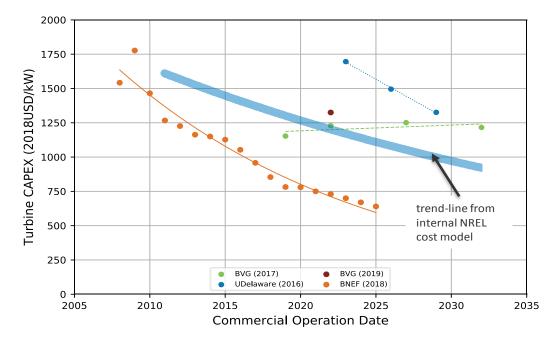
https://www.ge.com/reports/extreme-measures-107-meters-worlds-largest-wind-turbine-blade-longer-football-field-heres-looks-like/

Siemens Gamesa and MHI Vestas Dominate Offshore Turbine Market

- Siemens Gamesa is largest supplier of offshore wind turbines, with 55% of operating capacity (12.3 GW)
- MHI Vestas has over a 15% share of installed offshore wind capacity
- Siemens Gamesa's global share is projected to grow to 60.3%
- MHI Vestas is expected to hold about a 14.5% share.
- GE's share is projected to grow to 8.9%.
- Goldwind and Ming Yang are building strength in the emerging Chinese market.

Chinese Turbine Sizes Also Increasing

Announcement September 25, 2019


The Dongfang 10MW turbine. Photo: DEC-Zhang

China unwraps first 10MW wind turbine on landmark day

Dongfang unveils nation's first double-digit model and Goldwind reveals 8MW machine as Chinese OEMs ramp-up offshore

Turbine Costs May Decrease Despite Upscaling

- 2018–2019 cost studies indicate turbine CapEx between \$800/kW and \$1,200/kW
- Innovations may offset cost increases from upscaling.

Source: DOE 2018 Market Report: https://www.energy.gov/eere/wind/downloads/2018-offshore-wind-market-report

Sources: Valpy et al. (2017), Kempton et al. (2016), BVG Associates (2019), and BNEF (2018e)

Commercialization Path for Floating Wind Energy

Photo: Equinor Scotland 30 MW 5 Turbines – Credit: Walt Musial

Proof of Concept Phase 2009 to 2016 6 full-scale prototypes totaling about 20-MW 2 - 7 MW turbines Pre-commercial Phase 2017 to 2023 Multi-turbine commercial arrays 14 projects totaling over 200-MW

> Commercial Floating Arrays 2024 and beyond 400 MW+ arrays proposed Principle Power – Hawaii/California Progression - Hawaii Equinor - TBD

Trident Wind - California Dyfed/Kantanes – United Kingdom

Turbines

Adapted landbased turbines

Custom fixedbottom offshore turbines

Eventual floatingspecific turbines

Possible Characteristics of Floating-specific Wind Turbines

- Downwind rotors
 - 30% rotor mass reduction
 - Bigger rotor diameters
 - Rotor tilt (27 degrees) +7% AEP on vertical wake control
 - Yaw stability, yaw system simplification
 - Enabling larger turbines
- Two blades: system weight reduction/simplified installation and maintenance
- High speed/low solidity rotors
- Composite nacelle components / composite towers
- Tilting designs to enable spars at shallow staging sites

Offshore Wind Grid Technology Opportunities

- Large-scale **storage** options
- Multi-wind plant transmission aggregation
- Utility-controlled and self-directed services
- Offshore grids
- High voltage array distribution systems
- Wind plant substation innovations
- HVDC export systems
- Offshore wind value enhancers (2020 BPA study)
- Dry-land burial options

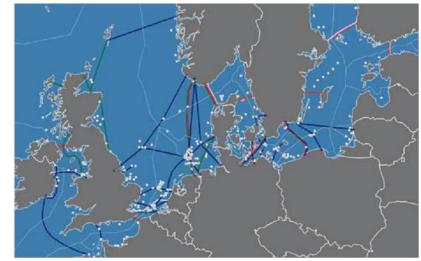


Illustration of possible offshore grid in the North Sea and Baltic Sea https://www.researchgate.net/figure/Illustration-of-a-possible-offshore-grid-in-the-North-Seas-and-the-Baltic-Sea-source_fig3_318226041

Key Offshore Wind Turbine Challenges

- **Turbine System Upscaling:** Understanding and developing turbine systems and associated infrastructure to scale components, logistics, and operations to 15-MW and beyond while supporting high penetration renewables
- **Providing Grid Services for Integrating 22-GW+:** Strategies to enable more efficient land-based grid connections and offshore transmission expansion to maximize the value of offshore wind while supporting and integrating other renewables
- **Reducing Metocean Uncertainty:** Quantify and validate the offshore wind and wave conditions to raise confidence in power production estimates, resource adequacy, design load calculations, and grid operational strategies at all time scales
- Hurricane and Low Wind Optimized Turbines: Hurricane designs optimized to survive in regions where major hurricanes (CAT 3-5) are likely while maximizing energy production in low wind regimes (estimated 1000-GW)
- **Floating Specific Turbines:** Designs, methods, tools and strategies to mature floating wind systems, enabling cost effective offshore wind in deep water regions
- **Reliability Improvements:** Address major industry O&M issues through laboratory testing and validation, improved O&M strategies, remote sensing, high fidelity data analysis, and automation.

Thank you for your attention!

Walt Musial Offshore Wind Platform Lead National Renewable Energy Laboratory walter.musial@nrel.gov

Photo Credit : Dennis Schroeder-NREL