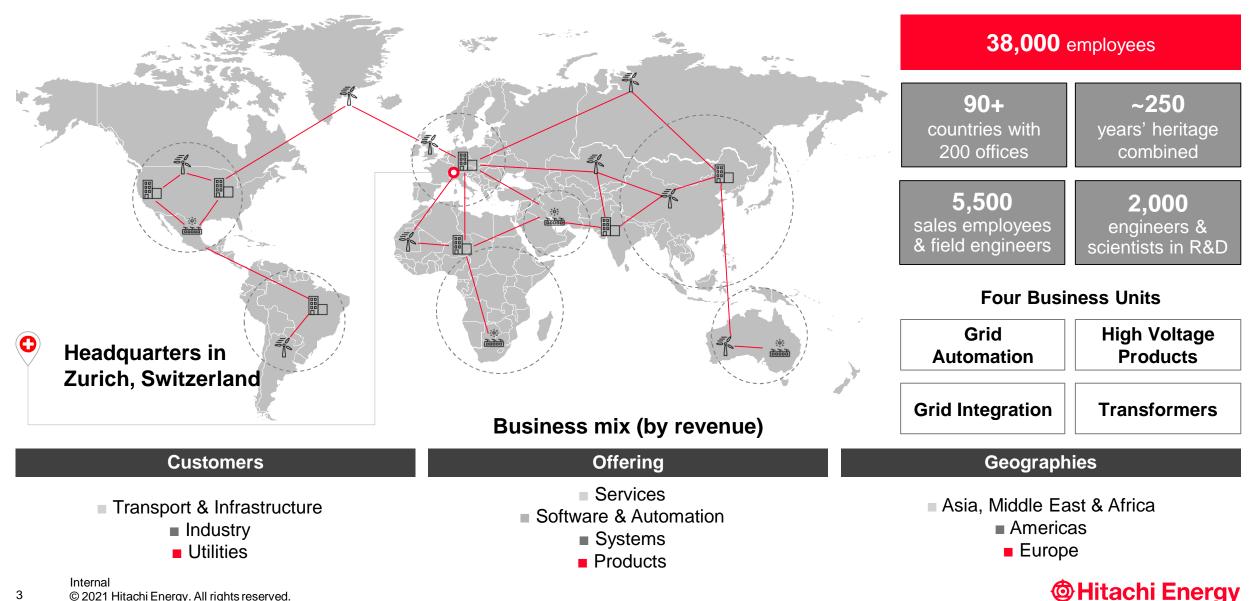


ESIG Meteorology & Market Design For Services Workshop – Denver, June 6-9, 2022 Panel: Integration of Probabilistic Forecasts into the EMS and MMS – Status and Prospects

A Market Management Systems (MMS) Perspective

Khosrow Moslehi

June 8, 2022



- Hitachi Energy
- Gird transformation Integration of renewable/intermittent resources
- Drivers of change and challenges
- MMS: Meeting the challenges
- Forward

About Hitachi Energy

HITACHI **Inspire the Next**

© 2021 Hitachi Energy. All rights reserved. 3

Grid Automation | A pioneering leader since 1905

Comprehensive portfolio of solutions...

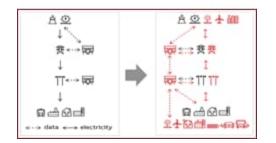
Substation	Communication	Grid Automation	Grid Edge	Enterprise SW & Network Control
Automation	Networks	Services	Solutions	

...addressing all key segments connected to the energy system

Generation Transmission Distribution	Industries	Transportation	Infrastructure
--------------------------------------	------------	----------------	----------------

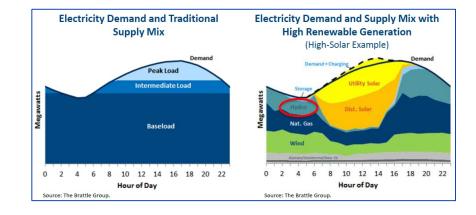
Internal © 2021 Hitachi Energy. All rights reserved.

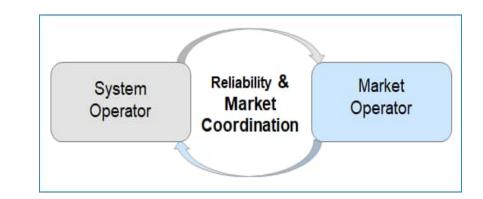
Hitachi Energy


Grid Transformation

- Restructuring (1990's)
 - Unbundling of vertical utilities
 - Electricity markets
 - ISO/RTO's (Central Dispatch), TSO's (Balanced Scheduled)
- Changing Utility Landscape (2000's)
 - Renewables and smarter grid resources
 - Changing resource characteristics
 - Increasing intermittency
- Emerging Business Model (2010's)
 - Rise of distributed energy resources (DER)
 - Two-way flows: within DX and DX-TX
 - "Transactive Energy"

Inspire the Next





5

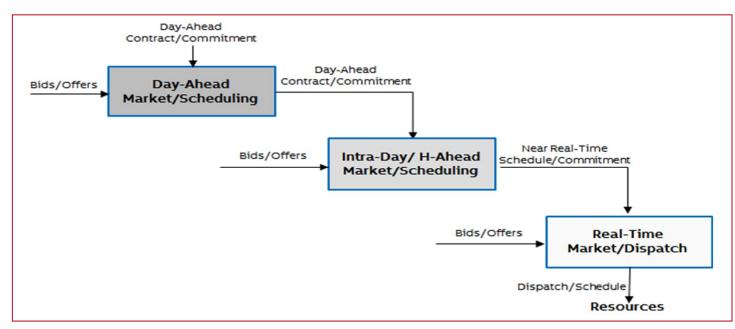
• Stochasticity

- Increasing load and generation uncertainty
- Less accurate forecasting
- Generation and load non-alignment
- More stressed transmission
 - Higher and more volatile flows, etc.
- Increasing number of smaller resources
- Lower system inertia
- Efficiency vs. reliability & resilience

OHitachi Energy

- Better forecasting distributed and hierarchical
- Higher levels of grid flexibility
 - Look-ahead capability longer horizon and finer time intervals
 - Generation flexibility and ramping capability
 - Flexible demand
 - Energy storage
 - More flexible & dynamic reserves
- Optimal utilization of transmission assets
 - More realistic modeling
- Co-optimization

7


• Higher performance scheduling/market clearing engines

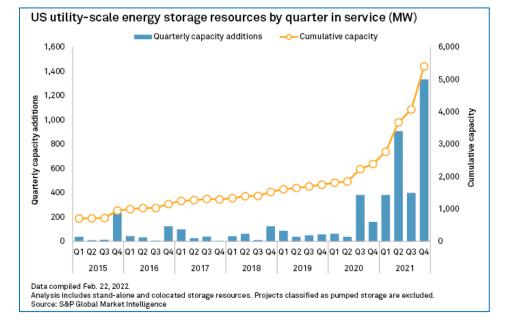
Inspire the Next

- Day Ahead, Intra-Day, Real-Time
- Reliability Scheduling
 - Multi-day, multi-week, etc.
- Co-optimization of energy, ancillary services, etc.

Hitachi Energy

Inspire the Next

- Generation Models
 - Combined Cycle Plants (CCP)
 - Optimal configuration determined by market clearing engine
 - Fast Start Units
- Complex reserve models
 - MW dependent reserve capability
 - System level and local reserve constraints
- Ramp Model
 - MW change rate a function of generation level
 - Convex and non-convex models
 - Forbidden regions
- Transmission
 - Post Contingency Correctives, PAR, Remedial Actions, etc.


Energy Storage

Various Storage Types

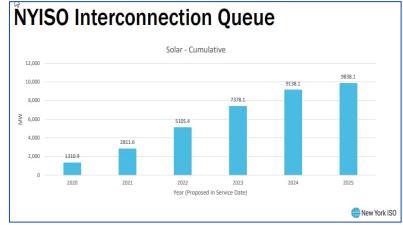
- Flywheels
- Pumped Hydro Storages (PHS)
- Energy Storage Resources (ESR) Batteries, etc.

• Operational Storage Models

- Ireland I-SEM (PHS)
- UK National Grid (PHS)
- NYISO (Flywheel, PHS, ESR)
- FERC Order 841 Compliance
 - NYISO ESR

@Hitachi Energy

- Development
 - Large Scale Solar on Dispatch
 - Hybrid Co-Located / Energy Storage Resources
 - Fast Start Pricing
 - Reserves for Resource Flexibility
 - Ancillary Services Shortage Pricing
 - DER Integration
- Investigation
 - Duct Burner Modeling
 - Dynamic Reserves
 - Transmission Shortage Pricing



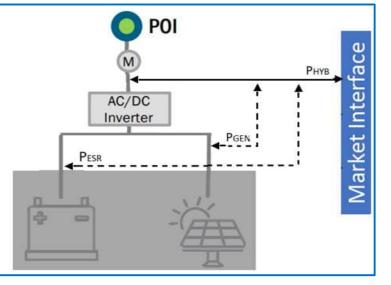
Inspire the Next

- Front-the-meter solar resources treated similarly to wind resources
- Resource submits real-time offers and responds to economic dispatch
- Not eligible for Day-Ahead Margin Assurance Payments
- Eligible for over-generation charges when subject to economic curtailment signal
- Benefits
- Minimize magnitude & duration of necessary resource limitations avoid less-efficient out-of-market curtailments
- Allow solar resources to set market prices
- Avoid negative pricing
- Additional flexibility

OHITACHI Energy

Co-Located and Hybrid Resources


- Co-located Storage Resource (CSR):
 - A single intermittent renewable resource and a single energy storage behind a single Point of Interconnection
 - Both units have distinct PTID / Capacity /Energy Bid / Energy Schedule / Settlement
 - Interconnection limit is treated as a hard constraint /time-dependent
 - Total CSR output (energy, regulation and reserve) is equal to or less than the POI

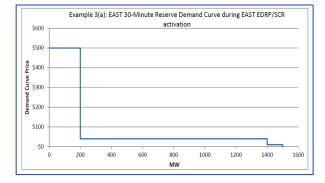

• Hybrid Storage Resource (HSR):

13

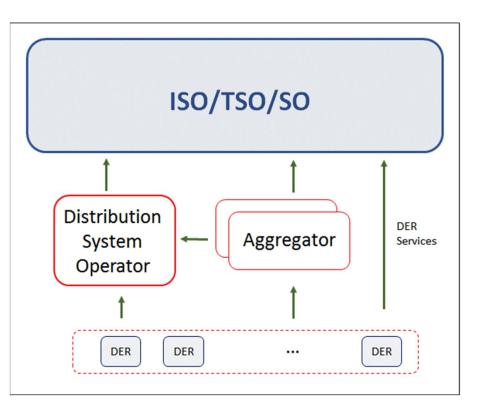
• Combination of generation and energy storage units co-located behind a single Point of Interconnection, that participates in the wholesale market as a single resource with a single PTID.

@Hitachi Energy

Ancillary Services Shortage Pricing:

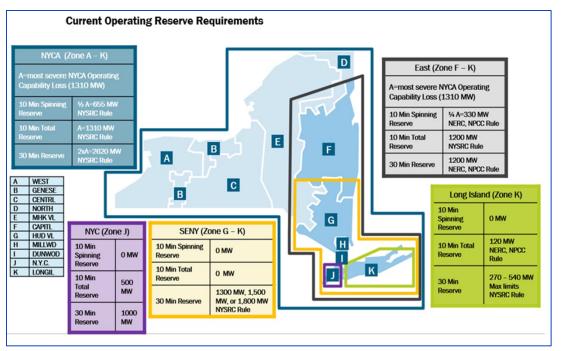

- Incentivize higher levels of reserve availability and grid flexibility
- Revised reserve demand curves and adjusted shortage pricing values

Reserve for Resource Flexibility:


- More optimal allocation of locally required reserves
- Reduced out-of-market actions to return facilities to Normal Transfer Criteria following a contingency

Enhanced Fast-Start Pricing:

- Relaxation of all dispatchable fast-start resources' min operating limits by up to 100% for the purpose
 of setting prices
- Eligible to set prices during the intervals in which they are called upon
- Start-up and no-load costs are reflected in the prices



- FERC Order No. 2222 requires ISOs to permit DER participation alongside traditional resources in the organized wholesale markets through aggregations.
- DERs can participate in the wholesale market directly or through an "aggregator."
- Individual DERs or their aggregates are represented at their respective interface by their bids/offers
- NYISO DER Participation Model

@Hitachi Energy

- HITACHI Inspire the Next
- Increasing intermittency necessitates scheduling adequate reserves in import-constrained locations
- Existing reserve requirements are essentially static
- A dynamic reserve procurement methodology should improve market efficiency & system reliability
- Investigation:
 - Dynamically determining the minimum local operating reserve requirements
 - Dynamically shifting reserve procurements to lower-cost regions based on available transmission capability

Background

• Reserves and regulation resources are required to achieve their emergency response rate over their entire range

Inspire the Next

Optimization Contraction Contractic Contractic

- Most combined-cycle (CC) gas turbines include duct firing response rates are typically slower and not modeled
- This limits availability of such resources to provide reserves and regulation
- Evaluate market enhancements to more accurately model resource

Modeling and computational complexities:

- Generic convex and non-convex multi-step resource response models
- Expected Benefits:
 - Additional dispatchable capacity is of increasing value as intermittent resources grow
 - Market efficiency, reserve availability and grid reliability

- Advanced modeling and analytical capabilities to address integration of intermittent resources and load stochasticity
- More realistic modeling key to higher market efficiencies and grid reliability
- Ever increasing need for higher performance scheduling and market clearing solutions:
 - More efficient models and problem formulations
 - MIP Tuning
 - New algorithms

