

ESIG Fall Workshop – Hybrid Resources

Derek Stenclik | October 14, 2021

T E L O S E N E R G Y

HyFlex Task Force – Hybrids & Emerging Flexible Resources

ESIG System Operations & Market Design Working Group Task Force

Project Objective

Advancing the state-of-theart understanding and experience-building for hybrid resources including plant interconnection, market rules, operation, and reliability considerations.

Task Force Members

Consortium of industry leaders, developers, grid operators, utilities, researchers, & manufacturers

Key Topics for Special Sessions

- 1. Hybrids 101: What are they and why do we have them?
- 2. Transmission Interconnection & Power Flow Modeling for Hybrids
- 3. Market Rules and Operations for Hybrids
- 4. Resource Adequacy and Capacity Accreditation for Hybrids

Four special sessions, ~2 hours each, to cover each key topic; summarized in a white paper

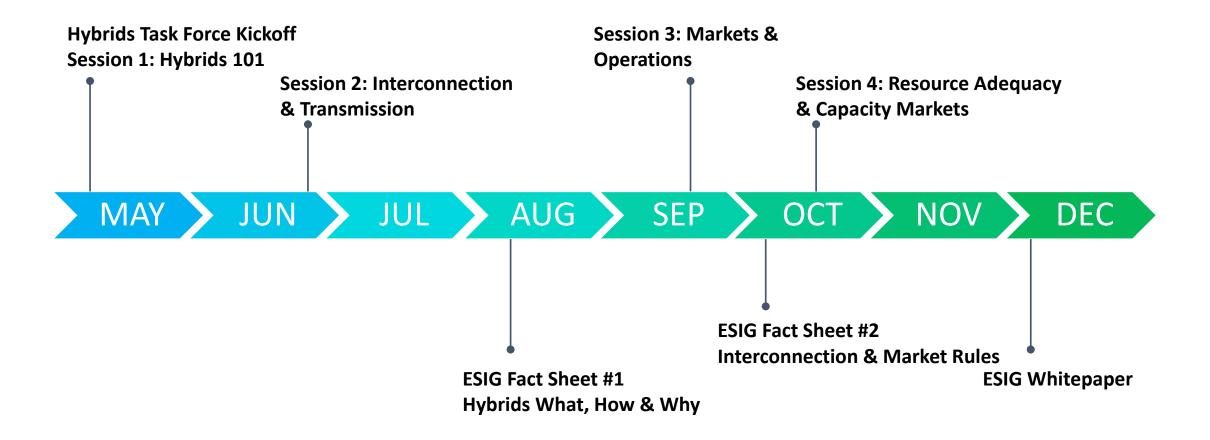
Project Timeline & Deliverables

Four special sessions scheduled from May – October 2021 Concluding with end of year whitepaper

Find out More

https://www.esig.energy/hyflex-hybrids-and-emerging-flexible-resources/

Contact: derek.stenclik@telos.energy



Task Force Schedule & Deliverables

Hybrid Energy Systems:

A broad universe that encompasses...

A wide variety of energy generation, storage, and conversion technologies

Generation

+-

chemical

natural

hydropower

Conversion

captúre

The colocation and/or coordinated operations of energy technologies

fully intergrated hybrid

Front-of-the-meter, behind-the-meter, microgrid, and off-grid applications

grid

facilities

microgrids

stand-alone systems

Systems that provide a variety of energy and non-energy products

chemicals

material inputs

What constitutes a hybrid? What doesn't?

- Technology?
- **Fuel Type**
- Controls?
- Interconnection?
- DC/AC Coupling?
- Use Case?

Objective: define hybrid resources, terms, and acronyms consistently across the industry

Source: DOE, "Hybrid Energy Systems: Opportunities for Coordinated Research," April 2021

The task force definition...

- ✓ Two or more resources at a single location (technology type, fuel type, storage, load)
- ✓ Located behind a single point of interconnection
- ✓ Include plant controls that coordinate the output of multiple resources to maximize value
- ✓ Operated and coordinated to appear as a single resource to the system operator

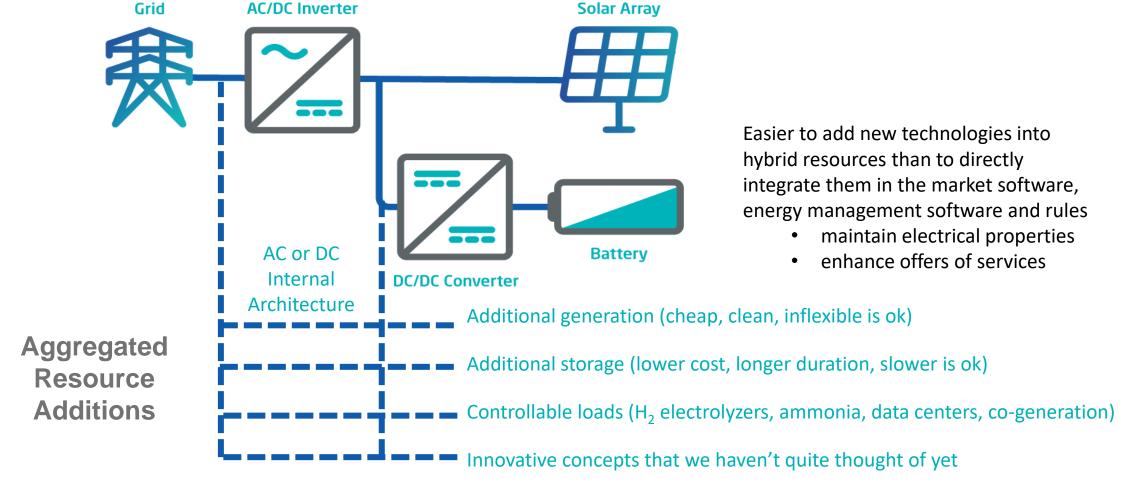
- × Does not require storage...
- × Distinct from co-located resources

Why hybrid resources?

Key drivers and decisions to hybridize

Most **Important**

- 1. Tax incentives (Solar ITC applies to battery based on charging)
- 2. Avoided T&D upgrades (interconnection upgrades)
- 3. Reduced Development Costs
- 4. Financing (reduced long-term risk)
- 5. Capture DC clipping losses
- 6. Market design rules that limit individual resource participation
- 7. Simplified procurement for utility off-takers
- 8. Plasticity: reduce stranded investment risk
- 9. Land constraints

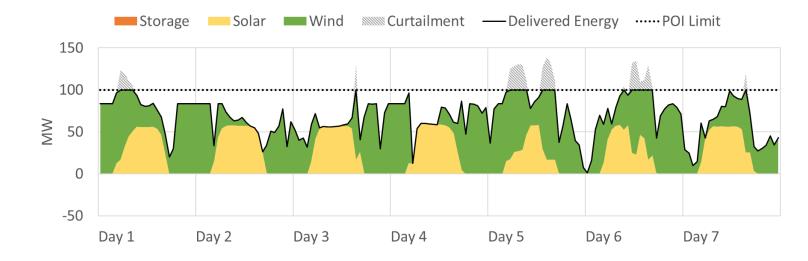

Objective:

expert stakeholders rank and prioritize importance of each key driver which ones are specific to hybrid vs. co-located?

www.telos.energy

What types of hybrids are we seeing?

Source: Mark Ahlstrom, ESIG, "Hybrid Resources as Power Plants The Strategic Importance of Hybrid Resources"

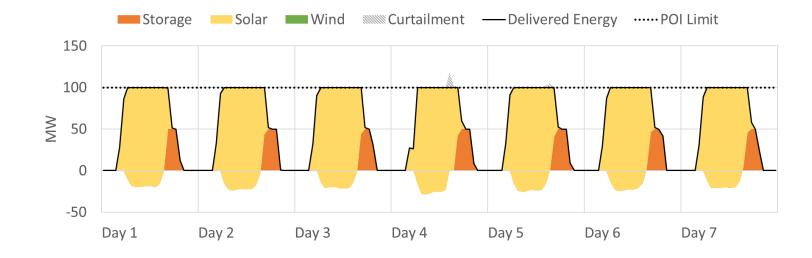


Overbuilding the POI

an economic opportunity and a renewable + storage accelerant

Wind + Solar Hybrid 100 MW Wind +70 MW_{dc} PV **170 MW of resources 100 MW POI**

	Wind CF	Solar CF	Hybrid CF	Curtailment
NY	32%	23%	45%	0.6%
TX	40%	34%	55%	1.4%
CA	37%	38%	53%	2.6%


Overbuilding the POI

an economic opportunity and a renewable + storage accelerant

Solar + BESS Hybrid

- $+150 \text{ MW}_{dc} \text{ PV}$
- + 50 MW 4hr Storage 200 MW of resources **100 MW POI**

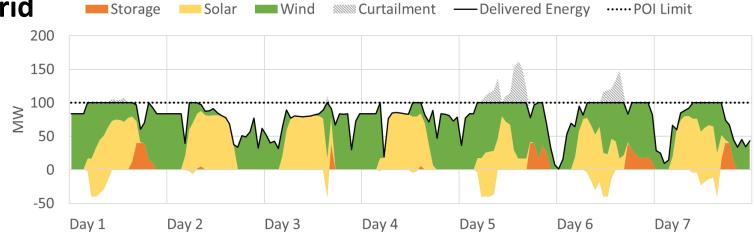
LOSENERGY

	Wind CF	Solar CF	Hybrid CF	Curtailment
NY	-	23%	25%	0.6%
TX	-	34%	35%	0.0%
CA	-	38%	40%	0.1%

Overbuilding the POI

an economic opportunity and a renewable + storage accelerant

Wind + Solar + BESS Hybrid


OSENERGY

100 MW Wind

 $+100 \text{ MW}_{dc} \text{ PV}$

+40 MW 4hr Storage

240 MW of resources **100 MW POI**

	Wind CF	Solar CF	Hybrid CF	Curtailment
NY	32%	23%	48%	1.5%
TX	40%	34%	63%	1.2%
CA	37%	38%	61%	2.6%

FERC Order 845

Reform of Generator Interconnection Procedures and Agreements

- Request a level of interconnection service that is lower than their generating facility capability;
- 2. Provisional interconnection agreements that provide for limited operation of a generating facility prior to completion of the full interconnection process;
- 3. Use surplus interconnection service at existing points of interconnection;
- 4. Study an interconnection customer's technology changes without affecting the interconnection customer's queue position

State of Charge Management: Options

Self-Schedule

 ESR selfdispatches its output and is insensitive to price.

Allowed by all ISOs/RTOs

Self-SOC-Management

- ESR provides an offer curve analogous to traditional resources.
- ESRs can set offers to ensure desired and feasible SOC.
- ISO schedules without SOC consideration

CAISO, NYISO ESRs, **NYISO PSH units**

SOC-Management-Lite

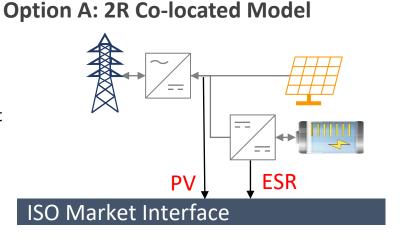
- ESR provides an offer curve.
- ISO does not schedule ESR if it would lead to infeasible SOC.
- Schedules are not optimized across time to optimize ESR schedules.

SPP, ISO-NE, MISO, PJM

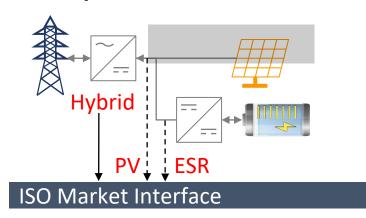
ISO-SOC-Management

- ESR may or may not provide an offer curve.
- ISO ensures SOC feasibility and optimizes ESR schedules across time to minimize cost.

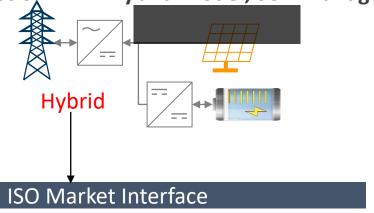
CAISO, NYISO ESRs, PJM PSH units


ISO Scheduling Responsibility / Theoretical Economic Efficiency and Reliability Benefits / Complexity

ESR Asset Owner Participation Responsibility and Flexibility / Computational Efficiency

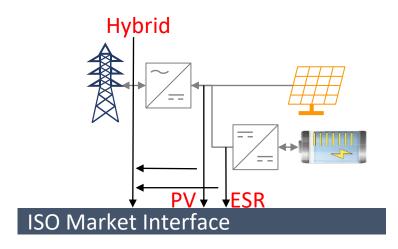

Hybrid Participation Models

Separately represent each resource, with minimal changes to existing market designs



Option C: 1R Hybrid Model, ISO-Managed **Feasibility**

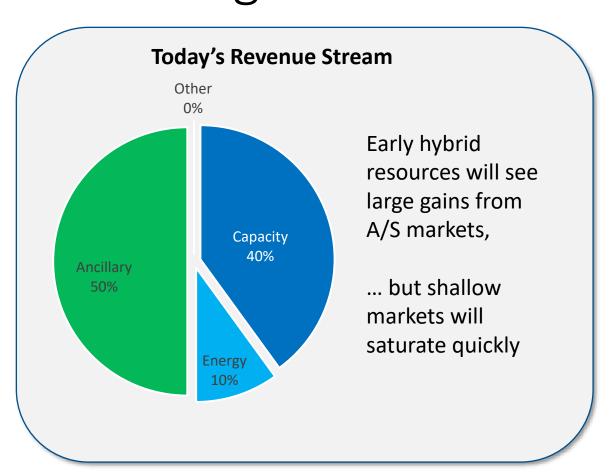
Add telemetry requirements to allow ISO to limit infeasible schedules

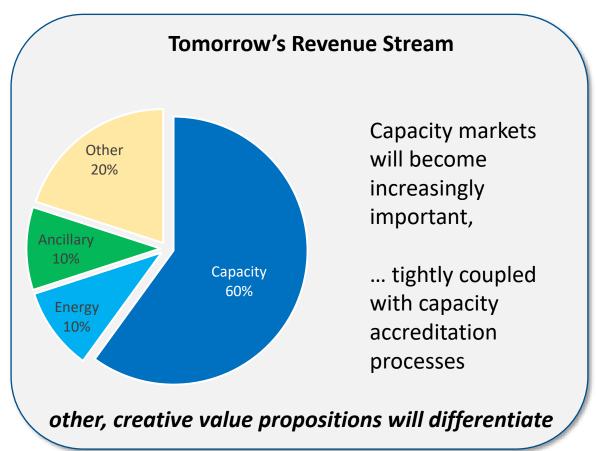


Option B: 1R Hybrid Model, Self-Management

Single offers and operating parameters allows participant bidding strategy flexibility

Option D: 2R Co-located Model, Linked


Add linking constraint to increase ISO's ability to operate the resource with representation of dependencies


Key Challenges for Hybrid Participation Models

Forecasting of VER production level and ESR SOC Offer parameters Unit commitment and economic dispatch Ancillary service and capacity market participation Metering requirements Mitigation rules Degradation

Hybrid Revenue Streams and Value Proposition will change over time

Thank You!

Questions?

Derek Stenclik derek.stenclik@telos.energy Telos Energy

ESIG Hybrids Task Force Next Steps

- **ESIG Fact Sheet: What, Why, and How of Hybrids**
- Session 4: Resource adequacy & hybrid resources
- ESIG Whitepaper (December 2021)

TELOSENERGY