

Integration of Probabilistic Forecasts into the EMS and MMS – Status & Prospects

2022 Meteorology and Market Design for Grid Services Workshop June 08, 2022, Denver, CO Sankaran Rajagopal Siemens Grid Software, Minnetonka, MN Sankaran Rajagopal@Siemens.com

Agenda

Current Solutions View

Markets (MMS and EMS)

Four Drivers of Influence – MMS and EMS

Overview – Managing Uncertainty in Energy

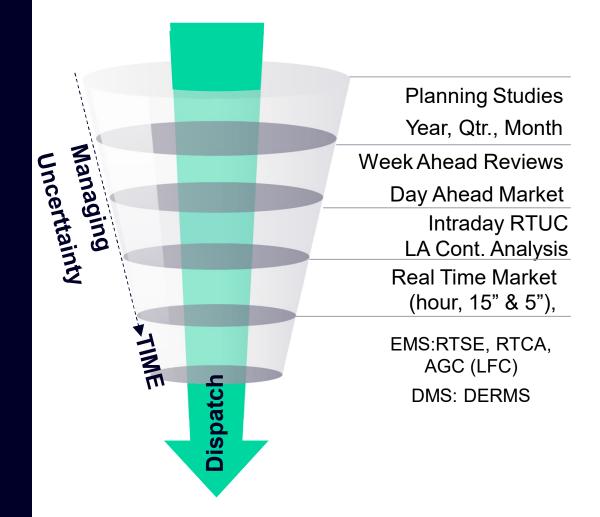
Six Year Journey Overview – California ISO

6

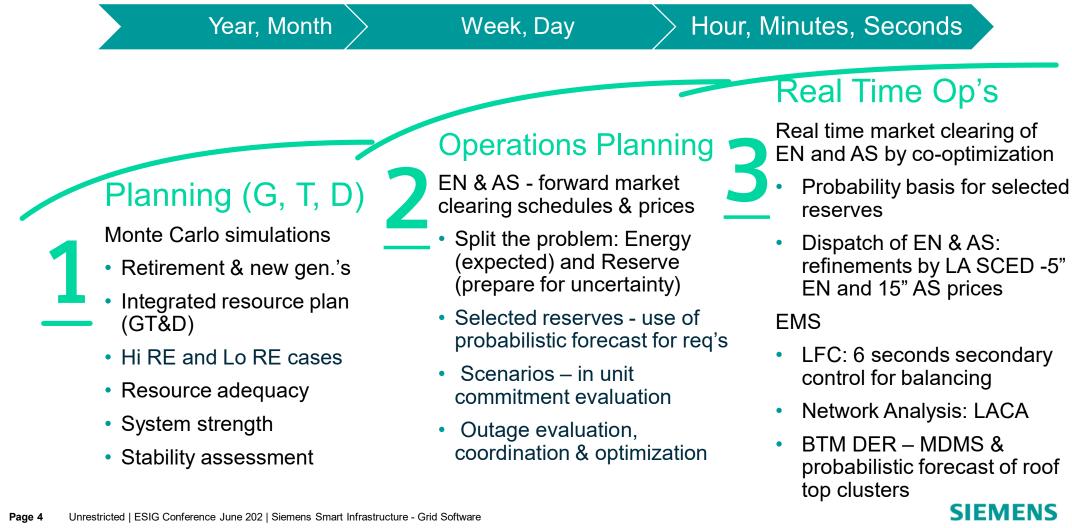
Example – Application use cases of variability forecast

Overview of Managing Uncertainty in Energy Markets

Average values - interval forecasts:


- Demand and Renewable for Net Load basis
- Dispatch readiness at-all-times over a given network & selected resources by a competitive market

Accounting for Net Load Uncertainty:


- Use of probability forecast
- BTM DER variations Forecast
- Uncertainty products
- Reg. and Ramp reserve management

Combine with other types of uncertainties:

- Scheduled outages' drift in time
- Unscheduled outages (NERC N-1)
- Spin and Non-Spin contingency reserve management

Current Solutions Market and System Operators – Context of Renewable/Demand Forecast

Four Drivers of Influences for MMS, EMS and DMS Evolution

Balancing

Energy Balancing (< 6 sec.) for Energy Quality.

NERC CPS Criteria for Freq. & ACE: penalty for non-compliance.

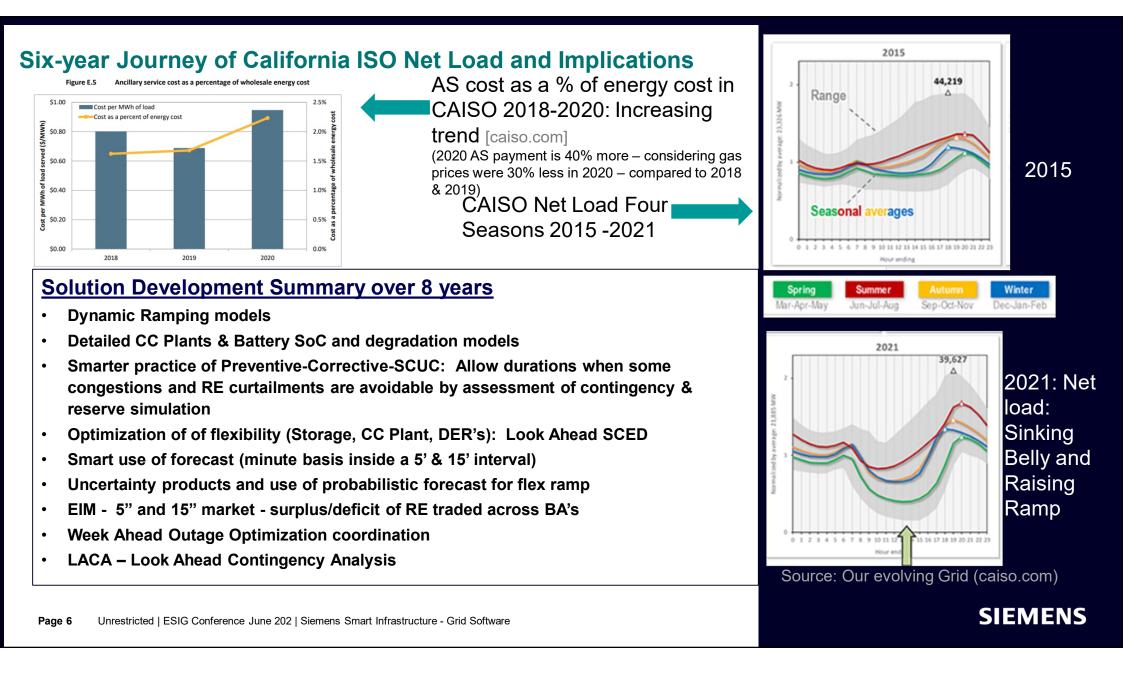
Forecast accuracy & resource readiness matter to face uncertainty

Products for Flexibility

Supply side evolved by emerging needs, market value & prices, incentives and climate

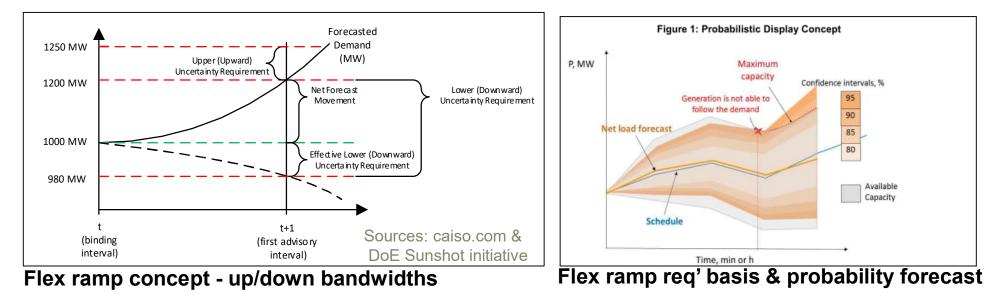
(e.g., FERC mandates: 755, 841, 2222, Investment & production tax incentives, IIJA, Netzero)

Tech. Assist for Net-zero


EIM, Storages & DER: Levers to keep it firm across a 5' period (manage interval averages excursion) Batteries & CC plants: Levers to manage variability in 6 seconds cycles

Reserve Management

Determination of time varying reserves is a high priority (prob. forecasts matter) in facing uncertainty


Assess and replenish flexible capacity ahead (dynamic ramping assessment, state of charge management)

Page 5 Unrestricted | ESIG Conference June 202 | Siemens Smart Infrastructure - Grid Software

Examples: Ramp Models and Concepts

Flex Ramp Requirements are dynamic constraints in Look Ahead Intervals

Determination of net load forecast in real time dispatch for the next 5-minute period:
Net load average -Persistence method basis of use of actual recent telemetry
Flex ramp req' setting - Quantile regression method (conditional median) provides a better assessment

Page 7 Unrestricted |© Siemens 2022 | Smart Infrastructure Grid Software

Industry Direction: Monetizing Variability and Addressing Climate Change by:

- Energy Imbalance Markets
- Net zero programs
- Business & homes, microgrids, campuses, communities: local energy storages & consumption and peer to peer transactions
- FERC 2222 Shape the demand
- Batteries & long-term storages (e.g., Hydrogen)
- Better pricing schemes of capacities for reliability
- System strength management

"Moving from a world where we forecast Load and schedule Generation, to a world where increasingly we may forecast generation and schedule load!!" [Regulatory Assistance Project, 2018]

Both depend on location and probability forecasts!

Work in Progress

In managing variability

- Reserve Req' setter improvements
- Quantile regression Flex ramp req's
- Spatial forecast improvements
- Dynamic transmission limits
- System strength (IBR impact) & frequency reserve
- Storage optimization improvements (hybrids, standalone, SoC & degradation models)
- DER in ISO dispatch FERC 2222
- DER Forecast MDMS & granular spatial –challenge of demand, roof top & storage mix in the forecast
- Include long term storage (Hydrogen)

Abbreviations

AGC	Automatic Generation Control
-----	------------------------------

- AS Ancillary Service
- BA Balancing Area
- BTM Behind-the-Meter
- DER Distributed Energy Resources
- DERMS DER Management System
- DMS Distribution Management System
- EMS Energy Management System
- EN Energy
- LACA Look Ahead Contingency Analysis

LFC	Load Frequency Control
MDMS	Metered Data Management System
MMS	Market Management System
NERC	North American Electric Reliability Council
RE	Renewable Energy
RTCA	Real Time Contingency Analysis
RTUC	Real Time Unit Commitment
SCDD	Security Constrained Dynamic Dispatch
SCED	Security Constrained Economic Dispatch
SoC	State of Charge

Contact

Sankaran Rajagopal, Ph.D., E.E. Director, Business Solutions Siemens Smart Infrastructure - Grid Software 10900, Wayzata Bl., Suite 400 Minnetonka, MN 55305, U.S.A. Phone +1 (612) 801-9909

E-mail Sankaran.Rajagopal@siemens.com

Page 10 Unrestricted | ESIG Conference June 202 | Siemens Smart Infrastructure - Grid Software