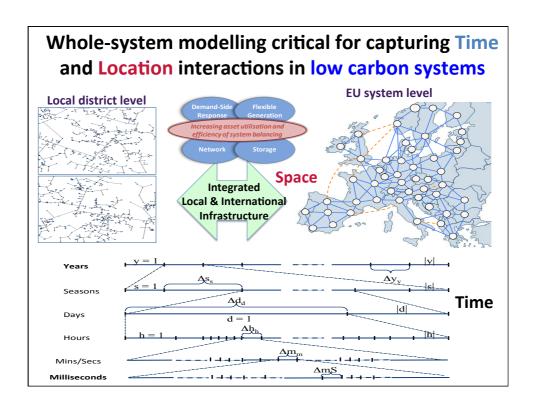

Assessing whole-system costs of low-carbon generation technologies (GB/EU context)


G Strbac, M Aunedi, D Pudjianto Imperial College London 2 October 2018

Imperial College London **Context**

- Facilitating cost effective decarbonisation of electricity generation sector
 - How do we compare cost of different low carbon technologies?
 - How to establish level playing field between different low carbon technologies?
- Future renewable energy projects are expected to be profitable with little / no government support
 - Carbon targets? Level of penetration of RES? Role of firm low carbon generation? Market design?

System Integration Cost: Concept

- Issue: how to compare *Levelized Cost of Energy/Electricity* (LCOE) of different low carbon generation technologies?
- **Approach**: quantify Whole-system cost (WSC) of any generation technology representing the sum of the levelised cost of energy (LCOE) and the system integration cost (SIC):

$$WSC_{gen} = LCOE_{gen} + SIC_{gen}$$

- SIC components: Increased balancing cost, network reinforcements, losses, Increased backup capacity cost, cost of maintaining system carbon emissions
- Definition: ?
- Approach: Whole-system approach

Imperial College

London

Methods to determine System Integration Cost - Examples

Relative

Method 1

- Nuclear removed; model expands <u>optimally</u> wind/PV to meet carbon target (<u>incremental</u>)
- → SIC [£/MWh] = change in total system cost ignoring the CAPEX/OPEX of two technologies involved, divided by substituted (nominal) generation output

Absolute

Method 2

- Add nuclear, or wind, or PV or CCS; model allowed to re-optimise system
- → Marginal benefit [£/MWh] = reduction in total system cost ignoring the CAPEX/OPEX of the low-C technology involved, divided by additional generation output

Imperial College

SIC & Flexibility

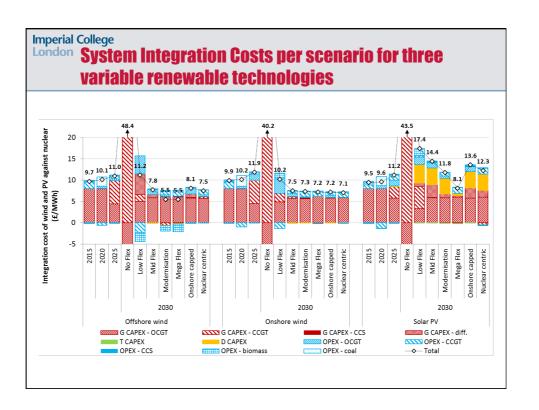
Flexibility

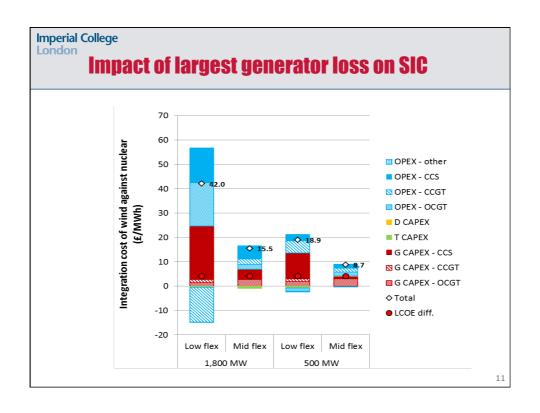
Scenario	No Flex	Low Flex	Mid Flex	Modern isation	Mega Flex
Year	2030	2030	2030	2030	2030
New storage (GW)*	0	5	10	10	15
DSR	0%	25%	50%	50%	100%
Interconnection (GW)**	7.5	9.9	11.3	11.3	15.0

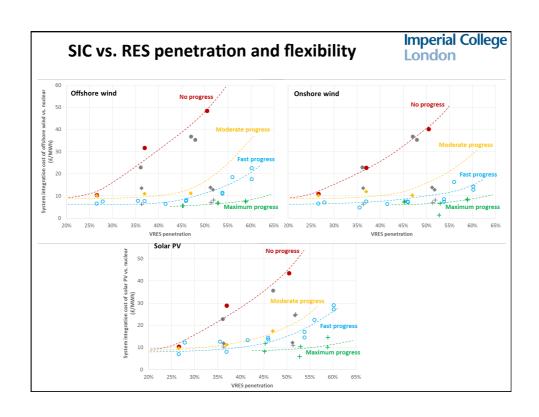
^{*} New storage capacity was optimally allocated across GB regions and network types.
** In all scenarios the model was allowed to add interconnection capacity (at a cost) if cost-efficient.

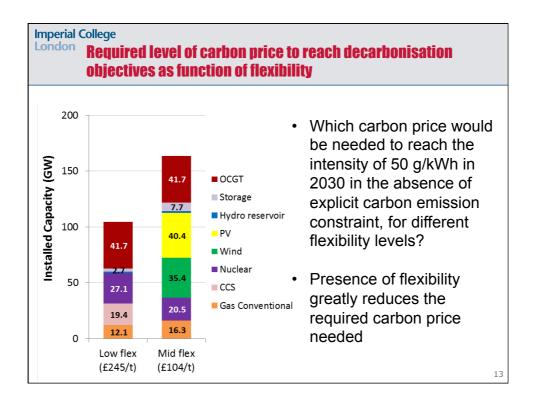
LCOE (£/MWh)

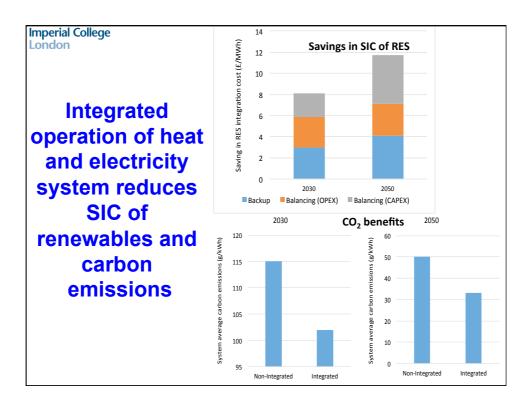
Nuclear 90 Offshore Wind 75 Onshore Wind 60 Solar 65

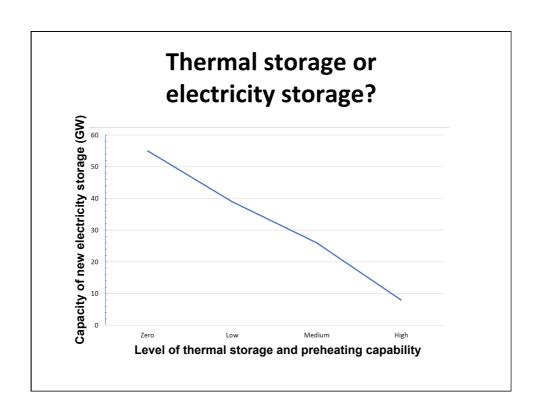

Modernisation

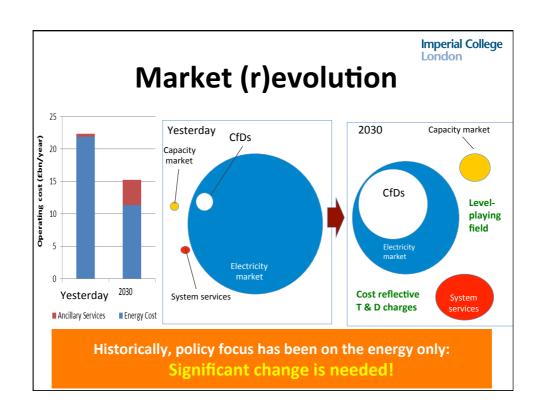

- Wind generators able to provide synthetic inertia and frequency response
- Wind generators able to provide reserve when curtailed
- · Improved forecasting of wind
- Ability to procure frequency response services via interconnectors


Whole System Costs per scenario for three variable renewable technologies				


.


Scenario name	No Flex	Low Flex	Mid Flex	Moderni- sation	Mega Flex	Onshore capped	Nuclear centric		
	LCOE								
Nuclear	90	90	90	90	90	90	80		
Offshore wind	75	75	75	75	75	70	80		
Onshore wind	60	60	60	60	60	60	60		
Solar PV	65	65	65	65	65	65	65		
	SIC vs. nuclear								
Offshore wind	48.4	11.2	7.8	5.5	5.5	8.1	7.5		
Onshore wind	40.2	10.2	7.5	7.3	7.2	7.2	7.1		
Solar PV	43.5	17.4	14.4	11.8	8.1	13.6	12.3		
	Whole-System Cost (WSC)								
Offshore wind	123.4	86.2	82.8	80.5	80.5	78.1	87.5		
Onshore wind	100.2	70.2	67.5	67.3	67.2	67.2	67.1		
Solar PV	108.5	82.4	79.4	76.8	73.1	78.6	77.3		





Imperial College London

Findings

- WSC & SIC are very much driven by system flexibility
 - Flexibility makes RES competitive against nuclear in 2030/2040 except if there is no progress in system flexibility
- SIC of RES increase significantly with level of penetration
 - Very low carbon target firm low carbon generation (nuclear) or seasonal storage are needed
- If the market is cost reflective, low carbon technologies will be exposed to system integration cost
- Integrated energy system approach will reduce SIC of RES (multi-vector approach)
- Linking market design with decarbonisation objectives (meeting carbon target at minimum cost)

Assessing whole-system costs of low-carbon generation technologies (GB/EU context)

G Strbac, M Aunedi, D Pudjianto Imperial College London 2 October 2018