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Solar + Storage for Resource Adequacy
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Storage Dispatch to Maximize Capacity Credit of Storage
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Define capacity credit similar to NREL's “Resource Planning Model”: difference of the highest peak load hours and
highest peak net load hours. Use a simple linear model to find the storage dispatch that maximizes this capacity credit.
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Analytical Approach

Configuration lQuestions __________

PV Alone * How does the capacity credit vary by site/utility combination?
* How much does the capacity credit change depending on solar
deployment?

Storage Alone  How does the capacity credit of storage change with the size of the
storage reservoir?
* Does the capacity credit of storage change with storage
deployment?

PV+Storage * How does the capacity credit depend on the PV+storage
configuration?
 How do results change with the battery size relative to the PV size?
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Capacity Credit of PV and Storage Alone
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PV penetration as a percentage of annual energy
* Capacity credit of PV varies by utility, depending on how » (Capacity credit of storagedepends on duration.
well correlated PV productionis with peak load. e Durationrequired to achieve near 100% capacity credit
» Capacity credit of PV declines with increasing penetration. increases with storage deployment.
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PV + Storage Configurations

Configuration | Description Share Source of
Equipment? | Electricity

for Storage

Independent PV and storage do not share equipmentand No Grid
storage is charged from the grid

Loosely PV and storage both connect on the DCside  Shared Grid or PV
Coupled of shared inverters, but storage can charge Inverter
from storage or the grid

Tightly PV and storage connect on DC side of shared Shared Only PV
Coupled inverters, and storage can only charge from Inverter
PV
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Capacity Credit of Solar+Storage Systems With Large
Batteries Depends on Configuration
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Capacity credit of PV+Storage can be limited by the

shared inverter when DC coupled
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No significant difference for loosely vs. tightly coupled
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* Foraload with high winter peaks, differences between
loosely and tightly coupled are more important

* Restricting storageto chargeonly from solar can lead to a
lower capacity credit than storage alone
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Solar + Storage Ramp Control
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Size the Battery Using a “Worst Fluctuation’” Model

Maximum  gattery Duration

Battery Energy

Ramp (Minutes at PV (kWh) Pn=75kW

(% / min) Nameplate capacity)

FLUCTUATION MODEL IN % OF PV NAMEPLATE CAPACITY

120 1 81 101.2

E- —Max. Fluctuation 2 41 50.6

o 100 —Max. Ramp Allowed 3 27 33.8

3 4 20 253
(@] 80

() 5 16 20.3

T o 6 14 16.9

o 7 12 145

qEJ ” 8 10 12.7

2 20 9 9 11.3

X 10 8 10.1

40 50_ 60 70 80 90 11 7 9.2

Time (seconds) 12 7 8.4

13 6 7.8

14 6 7.2

15 5 6.8

16 5 6.3
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Dispatch Battery Using a Simple Daytime Charging Ramp
Control Model

Ramp Limit = 5%/min
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Use NREL’s SAM to Analyze Battery Degradation and Costs
for Different Ramp Rate Limits

PV plant:
Ramp CaE\a;\tl:ity
Limit

‘ Profile

Battery Dispatch Profile Battery Model
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SAM execution

Financial Parameters

Battery

—  Dimension: kW &kWh }

Battery
} Degradation

— Dispatch Profile
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Incremental Battery Costs Increase with Stringency of
Ramp Rate Limits

Battery Costs (Fu 2018):

E m Cost: JEA, 12.5MW (left) m Cost: Talla, 75kW (left) @ Replace: JEA (right) © Replace: Talla (right) o = $285/kWh . SlOG/kW
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r=10 r=20 representsincremental
cost per unit of solar
energy to meet ramp
4 . — limit

More Stringent Ramp Rate Limit

Mammum Rate (%/min)
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Discussion

€ Capacity credit of solar varies by utility; capacity credit of storage varies with
storage duration

€ Capacity credit of solar+storage can be limited by shared inverter when
batteries are large

€ Batteries can be added to solar plants to meet specific ramp-rate limitations,
though there are additional costs

€ Duration of battery storage and power rating requirements increase with
more stringent ramp rate requirements. Larger batteries increase costs.

€ Degradation of batteries is more severe with small batteries that are
experience large charge and discharge cycles
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Additional Directions to Explore

€ How do battery size, degradation, and total costs change with various other
ramp control strategies?

€ How do the costs of ramp-rate limits compare to alternative approaches to
managing variability?

0 Geographic diversity: smoothing over larger footprints suggests it may be less
expensive to manage aggregate PV ramps rather than ramps at individual PV locations

o Flexibility from PV curtailment and dispatch

0 Ramping and balancing reserves from dispatchable generators

€ Refinement of representation of multiple services from the same battery
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APPENDIX
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Capacity Credit Based on Method Used in NREDL’s
Resource Planning Model
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What Storage Dispatch Provides an Upper Bound on
Storage Capacity Credit? Insight From CVaR
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Examples: Rockafellar et al. 2000. “Optimization of Conditional Value-at-Risk.” Journal of Risk 2: 21-42.
Conejo et al. 2010. “Risk Management.” In Decision Making Under Uncertainty in Electricity Markets
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Storage Dispatch to Maximize Capacity Credit of
Storage

Objective

2900

n
2500 Operational Constraints
S ” Load and Net Load NLy = Ly + Biy, — Boy,
§ | [CpCredlt] L Identify Peak Hours 7tn = NLp, — NLY 4
2o00 ] \
Eﬂih‘ L NL o1 Ignore Net Load in Non-peak Hours T =0
- Storage Energy Balance Blp = Blp—1 + 1" Bip — Bop
: © o T = Maximum Storage Level Bly < Blyax
Maximum Storage Production 0 < Bop < Bpmax
Maximum Storage Charge 0 < Bip < Bpmax
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Emerging Applications of PV Ramp-Rate Control

€ Inisolated systems, where broad aggregation of multiple resources is not possible,
managing the intermittent nature of solar with conventional generators is challenging.

€ In some cases, system operators have implemented interconnection requirements that
establish a maximum allowed fluctuation within a certain time scope. System operators
in Puerto Rico, for example, imposed a 10%/min limit on PV ramps.

€ Different strategies for using energy storage to limit PV fluctuations are demonstrated in
the literature. Each has advantages and disadvantages:

0 Ramp-Rate control strategies: daytime charging, inverter limitation, PV plant
production model, step model
0 Moving Average Model

0 Constant production
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Solar Power Fluctuations Without Storage

Number of Fluctuations exceeding rmax: Talla 2017 and JEA 2016-17
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d ° Talla 2017 (75kW)
- A JEA 2016 12.3MW
I A JEA 2017 12.3MW
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Ref. Value (550 kW) is
from studies in the
literature

Other values are from
the 75 kW City of
Tallahassee Airport
Plantand 12.5 MW
JEA JAX Solar Plant
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Smoothing of Power Fluctuations with Energy Storage:
Daytime Charging Ramp-Rate Control Model

4 Basic Control Model

€ Energy from the sun is used to keep battery level close to the reference value (half charge

E BAT, ref )

K -

! 7'4 . error
1 :T_ I '.Q+

¥ Ramp-rate (rmax) i

E BAT,ref

€ Value of recovery constant K: too high or too low values will increase the risk of totally
discharging the battery. Values between 2 and 8 are recommended.
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Battery Dispatch from Daytime Charging Control Model:
Power to or from Battery per minute

Battery Power: Charge and Discharge per minute for JEA year 2016
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More Stringent Ramp Rate Limit uses a
greater share of the battery power rating

Maximum battery power is never quite
reached to meet ramp ratelimits in these
two cases
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Battery Power: Charge and Discharge per minute for Talla year 2017

PV Nameplate Capacity

rmax (%/min)
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