

Forecasting Data Center Load for Operations

ESIG 2025 Forecasting & Markets Workshop

Marija Markovic, PhD
Power System Research Engineer, EPRI
MMarkovic@epri.com

Special thank you to my forecasting team – Cheng Lyu and David Larson

Data Center Loads Are Growing Fast

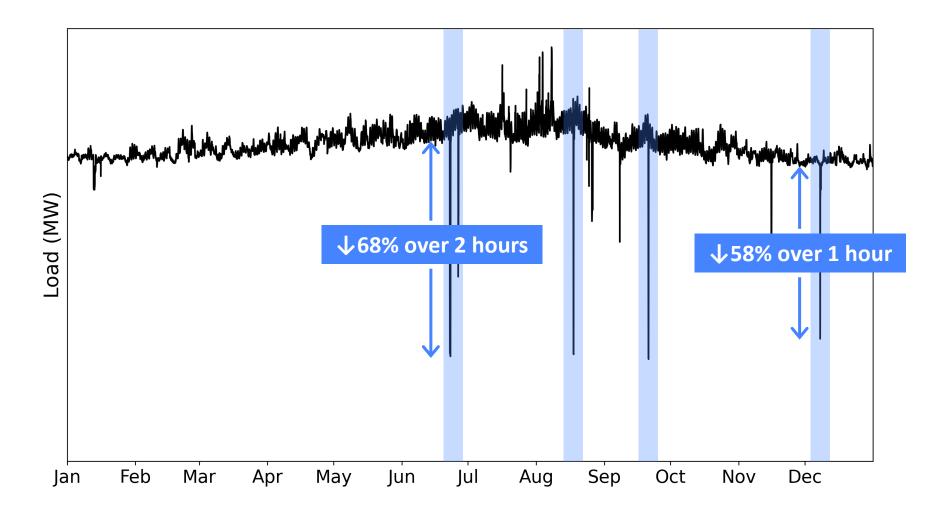
Current Industry Focus

- Long-term growth projections for planning
 - Forecast horizon: 5 10 years ahead
 - Spatial resolution: system-level
 - Temporal resolution: annual peak
- Guides capacity expansion and infrastructure investments

Next Industry Focus

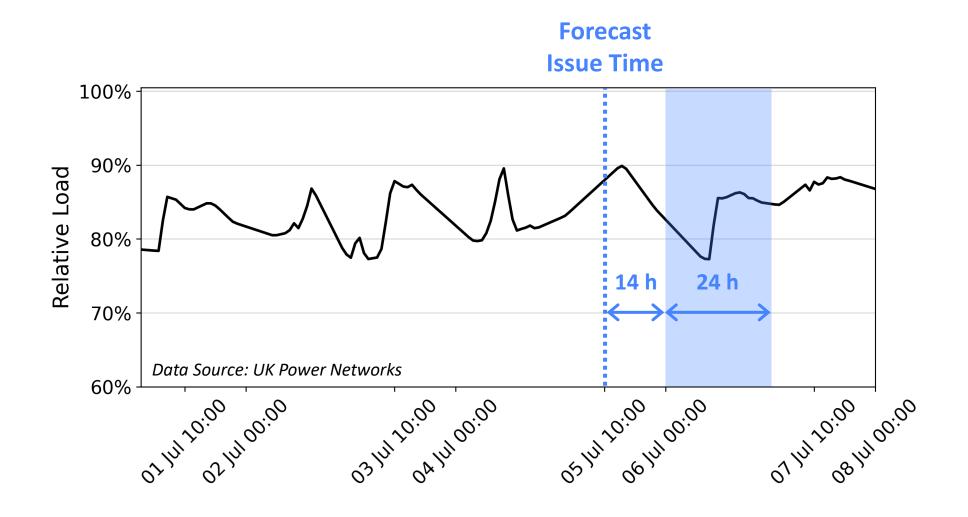
- Short-term forecasting for operations
 - Forecast horizon: hours to days ahead
 - Spatial resolution: site-level or zonal
 - Temporal resolution: hourly power
- Informs operational decisionmaking

Data Centers Are Not Like Other Loads



High load factor but <u>not</u> flat + sudden <u>MW-scale</u> spikes

Our Focus: Day-Ahead Forecasting of Data Center Load*



^{*} Total power demand (kW or MW) measured at facility level

Methodology

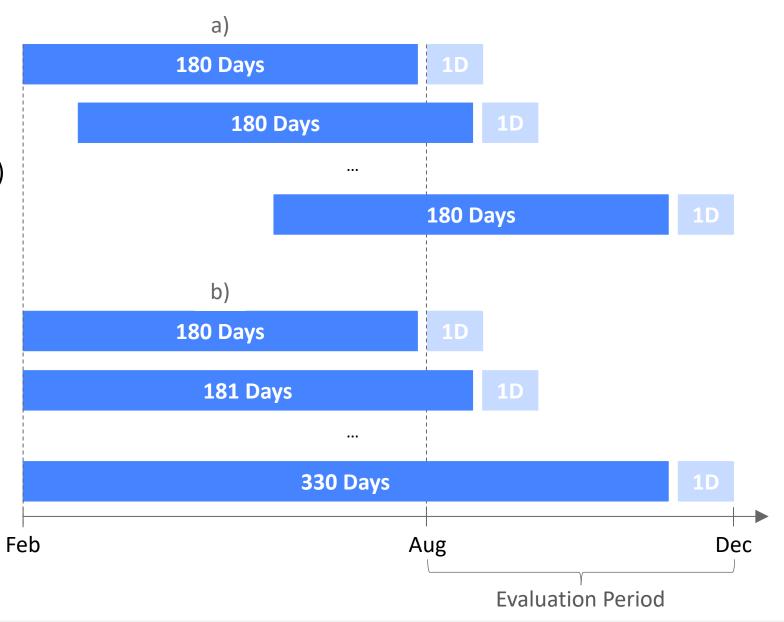
- Day-ahead forecasting with walk-forward retraining
 - a) Sliding window (fixed size)
 - Expanding window (cumulative)

train

test

Features

- Hourly lags
- Calendar/time features
- Rolling stats (mean/min/max) over past 1–2 days
- Weather features <u>not</u> used



Beginning with simple persistence forecasts

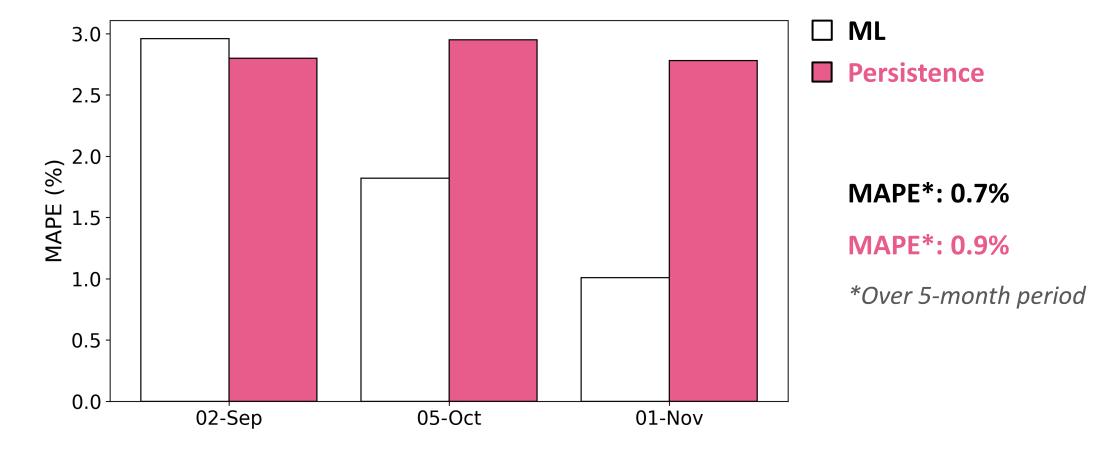
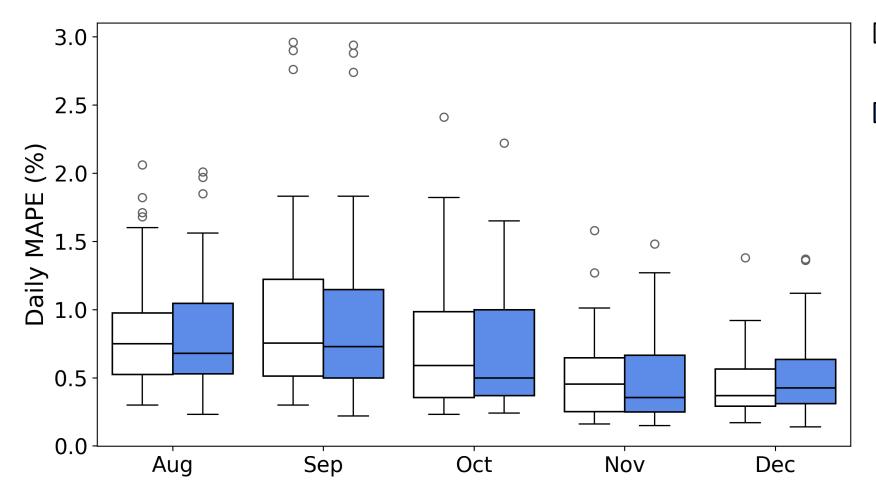


Figure: Comparing ML and Persistence on Difficult Forecast Days

ML performs better, but persistence sets a solid starting point

No need to wait a year to start forecasting



- ☐ Fixed-size training window
- Expanding training window

Total MAPE: 0.7%

Total MAPE: 0.7%

Comparable forecast accuracy with less data

All models show comparable MAPE – no clear best choice

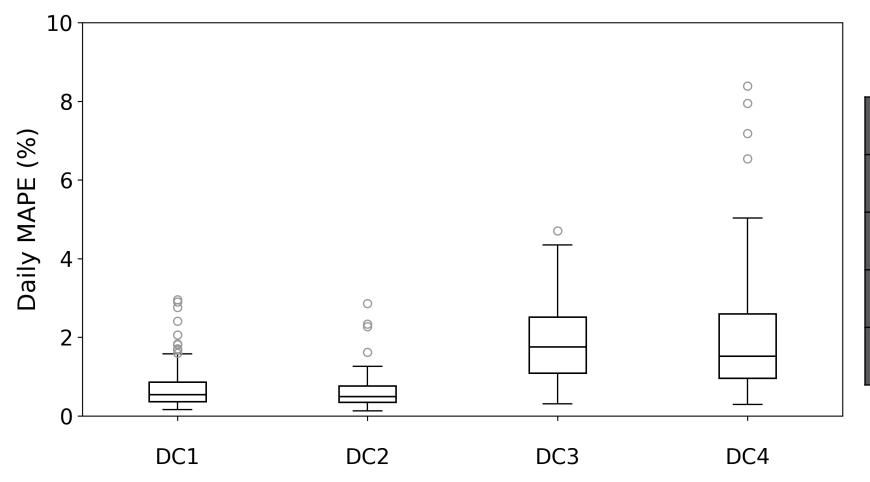
	DC1	DC2	DC3	DC4
XGBoost	0.8%	0.6%	2.1%	2.9%
Random Forest	0.7%	0.6%	1.9%	2.4%
Gradient Boosting	0.7%	0.5%	2.0%	2.6%

Datasets: 1 year of load data from four data centers (DC1–DC4) with diverse characteristics

Methodology: Sliding 1D window with training size fixed at 180 days

Evaluation Metric: MAPE (%) averaged over August-December

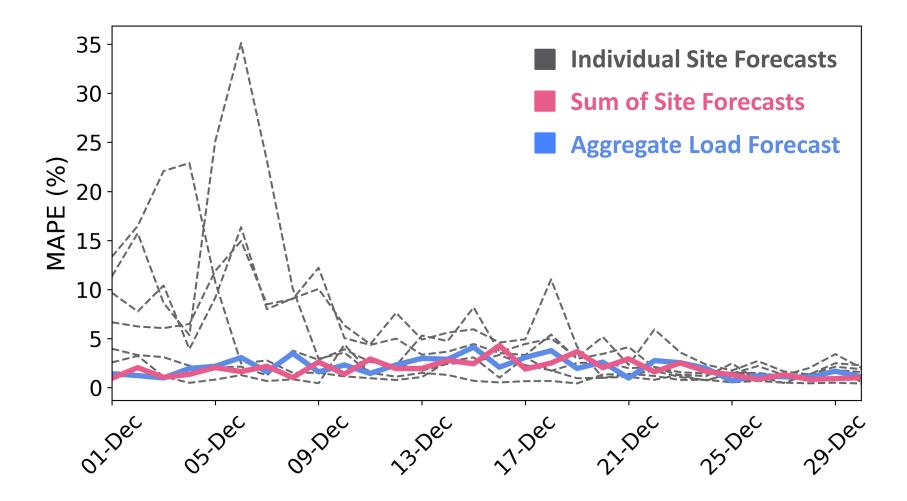
Data center characteristics matter more



Data Center	Load Factor (LF)
DC1	LF > 90%
DC2	LF > 90%
DC3	80% < LF < 90%
DC4	70% < LF < 80%

One model doesn't fit all – adapt to data centers accordingly

From site-level to zonal forecasting



Forecast accuracy improves with aggregation

Summary

1 Limited data yields accuracy comparable to larger sets

Data center characteristics impact performance more than model choice

Aggregate-level forecasting is more accurate than site-level

A deliverable on this topic is coming later this year — stay tuned!

