Novel Forecast Metrics

2025-06-24 Will Hobbs, SCS R&D

Why are forecast error metrics important?

Forecasts are:

- Designed
 By vendors
- Tuned
- Selected By us

based (largely) on error metrics.

So, we could be "optimizing" incorrectly without the right metrics.

Forecast Error Metrics

- Our best single(-ish) metric:
 - Mean Absolute Percentage Error (MAPE), Normalized Mean Absolute Error (NMAE, a.k.a Normalized MAPE)
- 2nd best:
 - RMSE?
- Note: MBE is definitely important, but should be so close to zero for a well-tuned forecast that you hope to not look at it much...
- Often run *hourly* (sometimes 15min or similar)
- Penalize large errors, so better forecasts are likely to be "smooth"

Quick illustration of NMAE "weakness"

• (more on this later)

- Fcast 1 gets ramp almost perfect, but timing is off
- Result is 2x higher NMAE
- Timing isn't always critical in real operations

Goals and thoughts for today:

- Novel forecast error metrics
 - Solar, load, net load
 - Ramp-based, minimum solar generation, minimum reserves
 - Probabilistic, sliding windows
- Novel forecast products
 - Example: Maybe we can't optimize for both NMAE and some rampbased metric, so we could need a separate ramp rate forecast
- Present to ESIG, get conversation going, settle on good standard metrics, and get better forecasts

Ramp example

Forecast Error Metrics

 Normalized Mean Absolute Error (NMAE) penalizes large errors, so better forecasts are "smooth"

- Fcast 1 gets ramp almost perfect, but timing is off
- Result is 2x higher NMAE
- Timing isn't always critical in real operations

Real Example from Trial, Single Site – DA

Tentative ramp metric

- General ideas are:
 - downward ramps in solar are worse than upward ramps
 - exact timing isn't critical
- On a 5-hr rolling interval (current hour, 2 before, 2 after), calculate the largest 2hr downward ramp
 - For each forecast, calculate NMAE of 5-hr rolling largest 2-hr down-ramp (excluding ramps smaller than 1% of nameplate)

(lower is better)

Forecaster	DA NMAE, 5-hr max down ramp
Reference	14.6
Pearl	15.3
Sapphire	15.9

Ramp Statistics (1-hr)

Another way of looking at ramps/variability

Minimum generation

Solar minimum gen

- Operators have been concerned when solar "drops"
- How low will it go?
- Forecast product (and metric) idea:
 - Minimum 5-min avg* total solar gen within a 1-, 2-, or 3-hour window
 - 95% confidence or similar
 - Need 2-hr notice
 - Could also use <u>maximum</u> in the morning
 - Window width increases with lead time

^{*} They really care about *instantaneous*, not 5-min

More ramps

Intra-hour ramps

• 97th percentile of 10-min ramps

Probabilistic hourly energy

Probabilistic metrics

- Prediction Interval Coverage Probability (PICP)
 - E.g., does the 95% chance forecast happen 95% of the time?
- Prediction Interval Normalized Average Width (PINAW)
 - E.g., now "sharp" or "narrow" is the forecast? Saying "it will be somewhere between 0 and 100%" isn't helpful
- Others: CRPS, Brier Skill Score (compares to ref fcast), more...

Questions, Feedback?

whobbs@southernco.com

