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California curtailment hits a record high
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Challenges

JFrequency control and regulation

= How much reserve do we need for high PV penetration?

= Do we need PV to provide new grid service (fast frequency

control services)?

= How to incentive PV to provide frequency ancillary services?

= A market for primary frequency control?

= Can PV provide reliable services?
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What is MIDAS solar?

Multi-timescale Integrated Dynamics and Scheduling
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|. Impact of solar variation on system reliability metrics
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Il. Fast vs slow response resources for regulation
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Generation (MW)

Ill. Impact of different PV control strategies
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IV. Interaction between primary frequency control and

regulation control

Simplified 240-bus WECC system Frequency response
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IV. Interaction between primary frequency control and

regulation control
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Future applications for MIDAS Solar
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Conclusion

MIDAS bridges the power system dynamics and scheduling across different

time-scales.
e Evaluate the impact of multi-timescale variability of REs on system reliability and
economics simultaneously.

* Assess theregulation reserve/ PFR reserve requirement under different renewable
variations and penetration levels.

* Understandthe overall performance of regulation fleets. (Fast resources vs slow
resources)

e Evaluate different PV control strategies for providing grid services.

* A better understanding of the interactions of PFC, SFCand their reserves.
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