
Probabilistic Methods in Operations

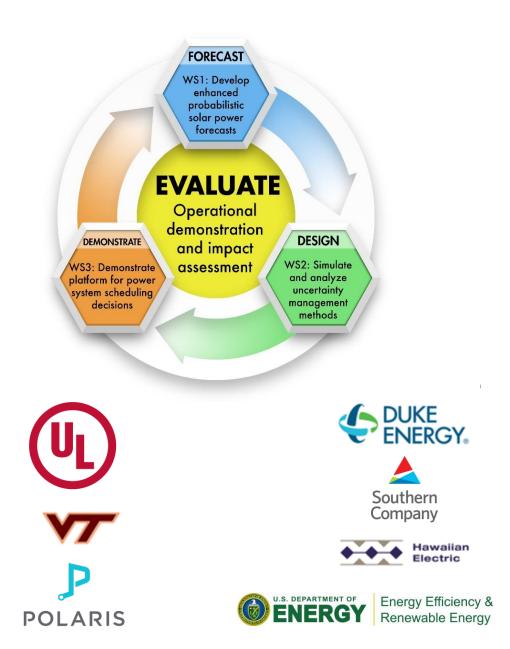
Will Hobbs, PE Southern Company R&D March 23, 2022

Southern Company

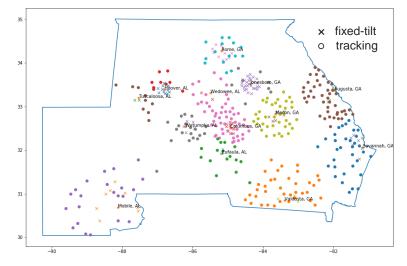
This work focuses on our balancing area in the Southeast

Outline

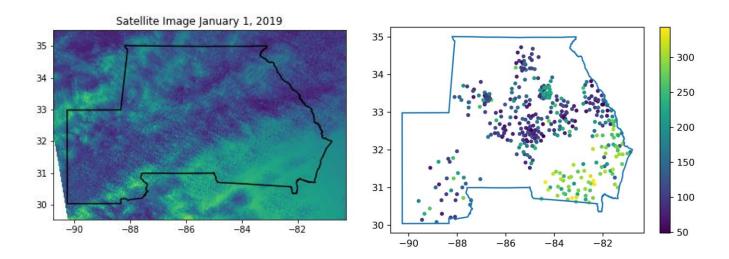
- **OPTSUN**: Using probabilistic information
- Solar Forecast Arbiter: Evaluating forecasts (probabilistic or otherwise)
- Flexible Solar: Another tool in the toolbelt


OPTSUN Acknowledgments

- Aidan Tuohy
- Dan Kirk-Davidoff
- David Larson
- Miguel Ortega-Vasquez
- Mobs Bello
- Qin Wang
- Russ Philbrick
- (Others I'm forgetting)

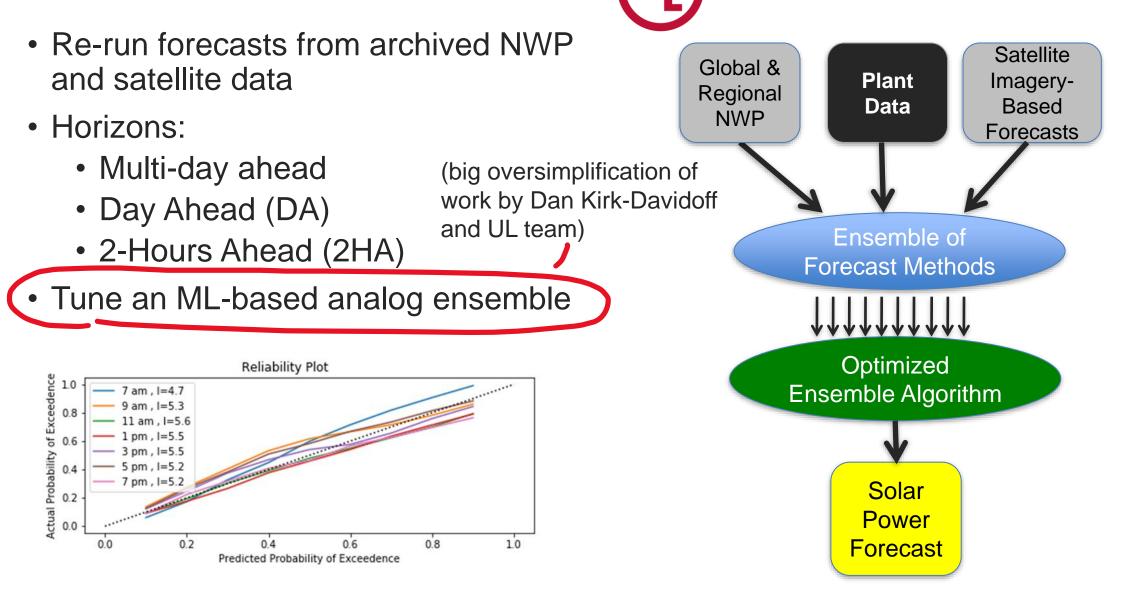

EPRI OPTSUN Project

- <u>Operational Probabilistic Tools for Solar</u> <u>Un</u>certainty
- Forecast: improved probabilistic forecasts
- Design methods for managing uncertainty (using production cost modeling)
- **Demonstrate** a scheduling management platform (SMP) to support decision making

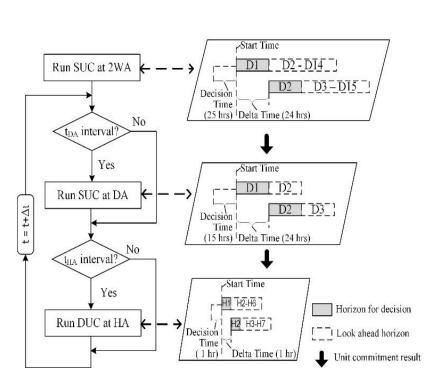


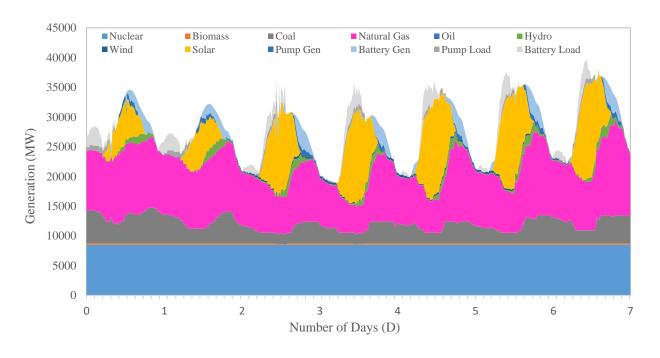
Solar Plants, Power Output

Solar capacity scenarios:
Existing (~2 GW)
7 GW
10 GW
20 GW



- 1. Select sites
- 2. Collect satellite data* and tune
- 3. Model individual plant power
- 4. Sum


*160,000 visible and IR satellite images from the GOES 16 satellite


Forecasts

Production Cost Model

- <u>Representative</u> inputs (not a match for future system)
- Multiple commitment cycles
- deterministic unit commitment (DUC)
- stochastic unit commitment (SUC)



Reserve Determination Methods

- **D** Deterministic Forecast (Baseline)
- Based on Historical Observations:
 - P1 All scenarios: Consider <u>all</u> possible conditions from observations
 - P2 Extreme scenarios: Consider only worst possible conditions
- Based on Forecasted Conditions:
 - P3 Bounds of Extreme Scenarios
 - P4 Prediction Interval

EPRI's DynaDOR tool

All P Methods: "Robustness" is selectable. E.g., 0.99 covers 99% of scenarios or 99% f.cast confidence. 0.90 is lower, ...

(synthetic scenarios)

Results

Results (draft)

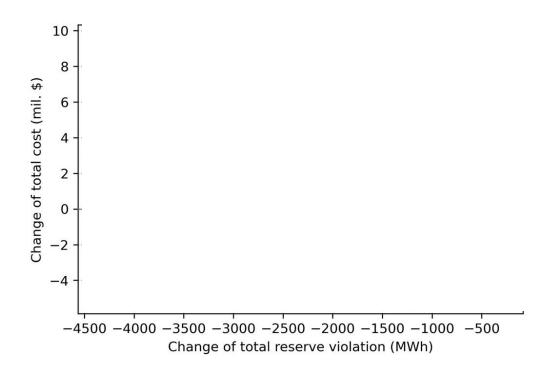
7 GW Solar

20 GW Solar

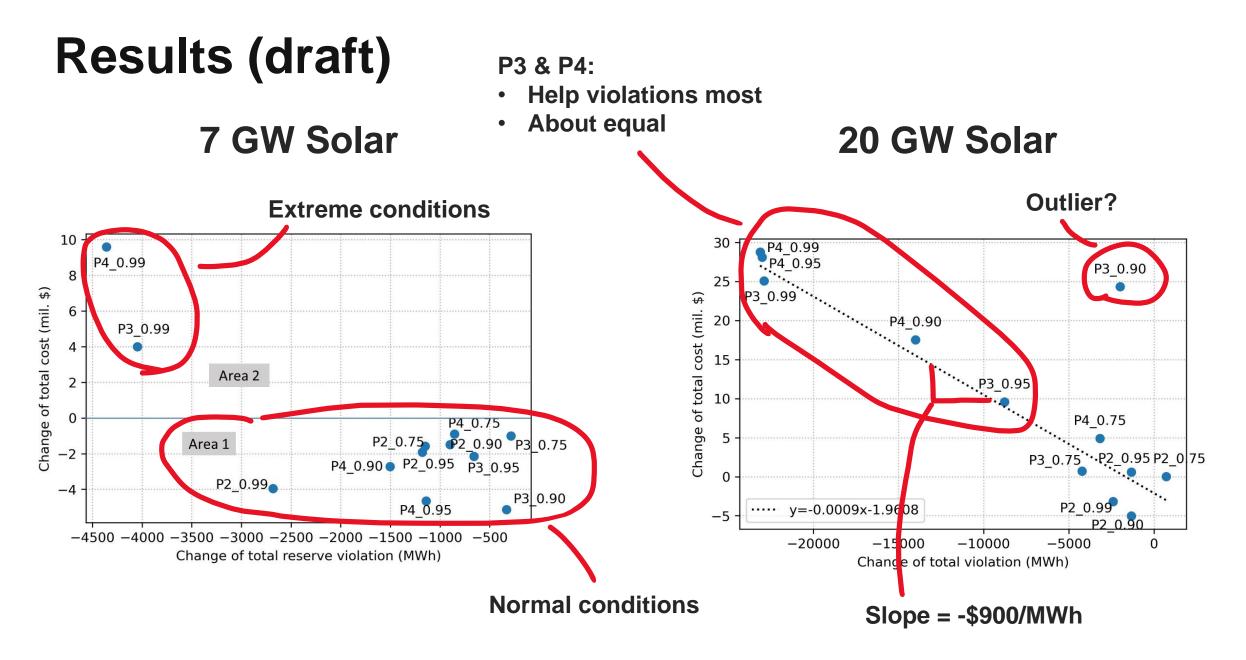
Methods	D	Static	Risk (100MW)	P3 (90%)	P3 (99%)	P4 (90%)	P4 (99%)	Hybrid	Methods	D	Static	Risk (160MW)	P3 (90%)	P3 (99%)	P4 (90%)	P4 (99%)	Hybrid
Annual fuel cost w/o	2,997 M	2,997 M	2,997 M	2,998M	3,006 M	2,997 M	3,013M	3.013 M	Annual fuel cost w/o	2,493 M	2,496 M	2,491 M	2,522 M	2,631 M	2,594 M	2,635 M	2,632 M
penalties (\$)		(10.0%)	(10.0%)	(1.002%)	(10.3%)	(↓.03%)	(†0.5%)	(↑0.5%)	penalties (\$)		(↑0.1%)	(↓0.1%)	(†1.1%)	(†5.5%)	(†4.1%)	(†5.7%)	(†5.6%)
Annual total cost w/	3,004 M	3,004 M	3,003 M	2,999 M	3,008 M	3,001 M	3,013 M	3,013 M	Annual total cost w/	2,610 M	2,614 M	2,608 M	2,635 M	2,635 M	2,628 M	2,639 M	2,637 M
penalties (\$)		(†0.0%)	(↓.02%)	(↓0.17%)	(†0.13%)	(↓.09%)	(†0.3%)	(†0.3%)	penalties (\$)		(↑0.16%)	(↓0.1%)	(↑0.93%)	(↑0.96%)	(†0.67%)	(†1.1%)	(†1.01%)
Reg. Down	3,490	3,522	2,575	2,831	797	1,934	896	163	Reserve vio.	15,406	14,535	14,562	14,415	3,959	8,411	3,844	3,854
vio. (MWh)		(†1%)	(↓26%)	(↓19%)	(↓77%)	(↓45%)	(↓74%)	(↓95%)	(MWh)		(↓5.7%)	(↓5.5%)	(↓6.4%)	(↓74.3%)	(↓45.4%)	(↓75%)	(↓75%)
Operating reserve vio.	1,995	2,404	2,884	2,323	641	2,048	229	139	Balance vio. (MWh)	19,893	20,383 (†2.5%)	19,924 (↑0.2%)	19,269 (↓3.1%)	0 (↓100%)	4,745 (176.1%)	0 (↓100%)	0 (↓100%)
(MWh)		(†20%)	(†45%)	(†16%)	(↓68%)	(†3%)	(↓89%)	(↓93%)									
Total	5,485	5,927	5,459	5,154	1,438	3,983	1,125	302									
reserve vio. (MWh)		(†8%)	(↓0.5%)	(↓6%)	(↓74%)	(↓27%)	(↓79%)	(↓94%)									
Balance vio.	nce vio. None																

11

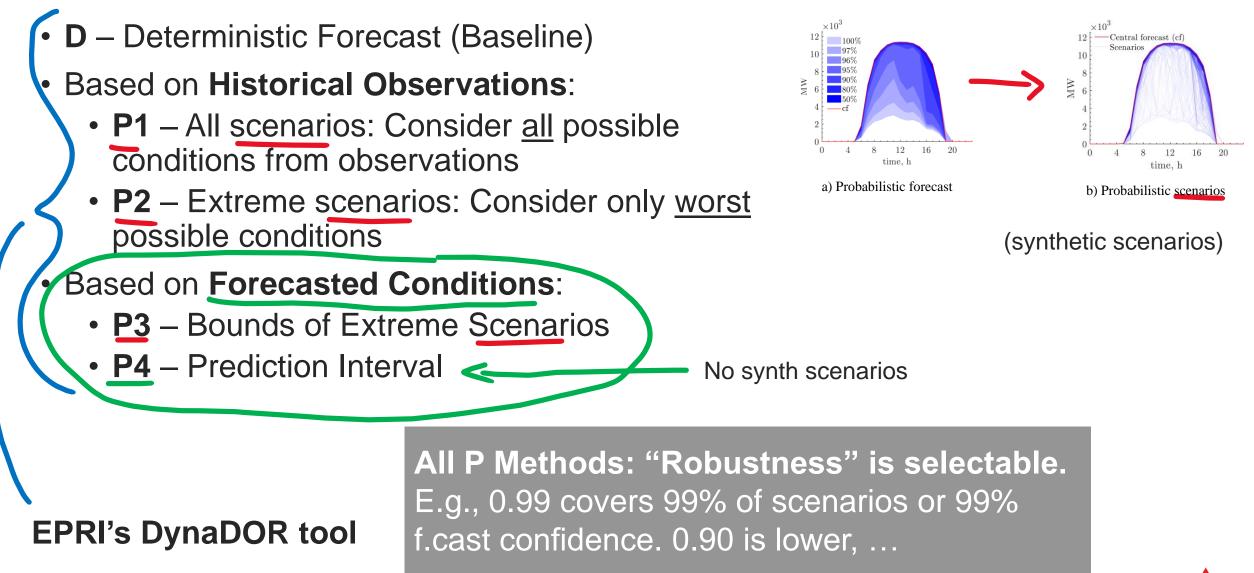
Results (draft)																	
7 GW Solar									= better = worse 20 GW Solar								
		Costs															
Methods	D	Static	kisk (100MW)	P3 (90%)	P3 (99%)	P4 (90%)	P4 (99%)	Hybrid	Methods	D	Static	Risk	P3 (90%)	P3 (99%)	P4 (90%)	P4 (99%)	Hybrid
Annual fuel cost w/o penalties (\$)	2.00716	1.00100		1.000		1.001100			Annual fuel cost w/o penalties (\$)	1.40136	1.000		1.100.00		1.000.00	Lauras .	
Annual total cost w/		1.0010	1.000	Transfer of	1.000	1.000.000	-	-	Annual total cost w/	1,000	1.000	1.000.00	Larrag	Loren	1.409106	1.409786	2.47798
penalties (\$) Reg. Down vio. (MWh)	1.000	1.522	2.000	Lan		1.000			penalties (\$) Reserve vio. (MWh)	17.888		Lon Page	-	1000	-	1.000	1.000
Operating reserve vio. (MWh)	1.000	1.000	1.000	1.000 coattage		1.00		-	Balance vio. (MWh)	11,000	20.000	10.000	10.000	-	100		-
Total reserve vio. (MWh)	1.460	1.027	1.05	1.0%	1.00	100	1.00	-									
Balance vio.				N	one												

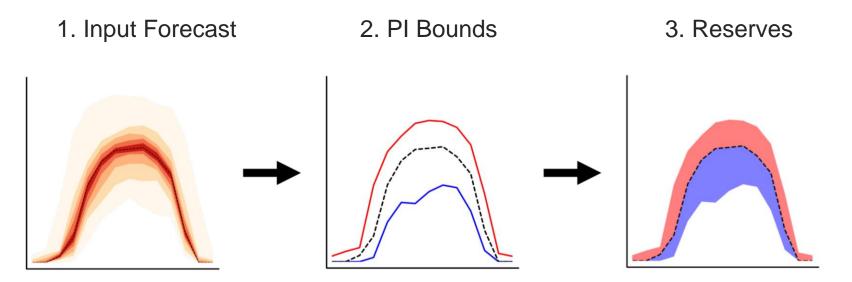

Violations

R	Results (draft)																
	C	- osts	7 GV	V So	olar				oetter vorse	20 GW Solar							
Methods	D	Static	kisk (100MW)	P3 (90%)	P3 (99%)	P4 (90%)	P4 (99%)	Hybrid	Methods	D	Static	Risk	P3 (90%)	P3 (99%)	P4 (90%)	P4 (99%)	Hybrid
Annual fuel cost w/o penalties (\$)	2,00738	1.07%				1.07%			Annual fuel cost w/o penalties (\$)	1.491.00	1.000.00		2.00M		1.000	Lastrage Lost Theory	
Annual total cost w/ penalties (\$)			1.0014	1.000		1.0010			Annual total cost w/ penalties (\$)	1	1.000	Laws	Lores	Lores	1.00%		24178
Reg. Down vio. (MWh)	1.000	1.122	2,075	1.000	1	1.000	100	-	Reserve vio. (MWh)		10.000	CA Map	10.00	1.00	1.00		1.000
Operating reserve vio. (MWh)	1,000	1.000	1.004	1.00	-	100			Balance vio. (MWh)	19,893	20,383 (†2.5%)	19,924 (†0.2%)	19,269 (↓3.1%)	0 (↓100%)	4,745 (↓76.1%)	0 (↓100%)	0 (↓100%)
Total reserve vio. (MWh)	1.487	1.07	1.05	1.04	1.000	100	1.00 1.700	-			?						
Balance vio.	lations	5	No	one							eprese bacity (tc.			


Results (draft)

7 GW Solar


20 GW Solar

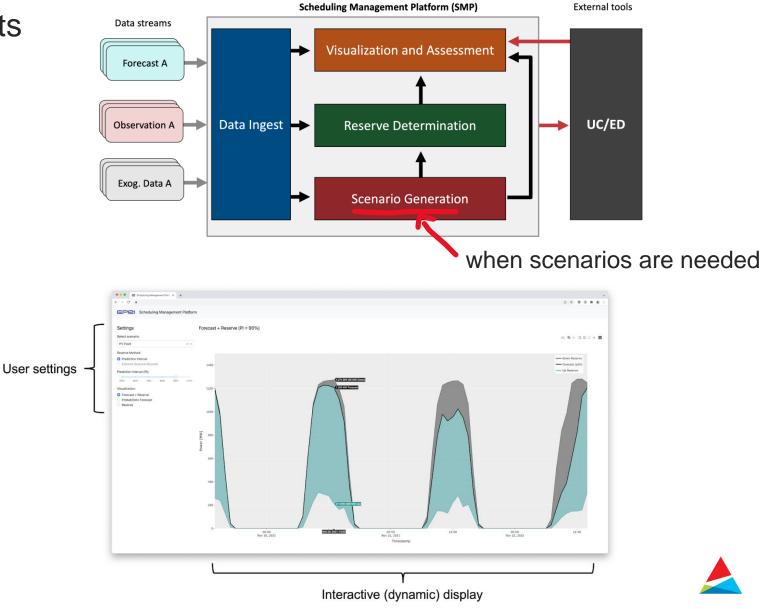


Reserve Determination Methods

P4 – Prediction Interval method

- 1. Input probabilistic forecast, e.g., day ahead
- 2. Select prediction interval (PI), e.g., 90% (p5-p95)
- 3. Determine reserves from PI bounds and p50 forecast
 - 1. Upward reserves
 - 2. Downward reserves

Scheduling Management Platform


(a.k.a., how we might apply this)

Scheduling Management Platform

- Integrate probabilistic forecasts
 and scheduling decisions
- Modular and customizable
- Will be open-source
- Browser-based interface

Solar Forecast Arbiter

Evaluating forecasts (probabilistic or otherwise)

Solar Forecast Arbiter A paradigm shift in forecast evaluation

- Originally DOE-funded, w/ University of Arizona, EPRI, Sandia, Sharply Focused
- Open source, standardized, easy trials, good reference forecasts
- Probabilistic f.cast evaluation

At conclusion of DOE work:

- Transitioning to EPRI
- Maintained by working group
- Becoming "Forecast Arbiter" (more emphasis on wind, load, net load)

We plan to join

Wikimedia Commons, CC BY-SA 4.0

Forecast Arbiter Working Group

- Contact David Larson (<u>dlarson@epri.com</u>) or Aidan Tuohy (<u>atuohy@epri.com</u>) for more info
- Aims to start mid-2022 and will include:
 - annual meetings,
 - updates on performance, and
 - support in benchmarks and use

22

Flexible Solar

Another tool in the toolbelt

Flexible Solar Study

- Published in JPV
- Used PSO model from OPTSUN
 - deterministic forecasts
 - 5-min intervals
- Solar: 2, 7, and 20 GW
- Solar Control Scenarios:
 - Must-Take
 - Curtailable (limited control)
 - Flexible (economic dispatch, reserves)
- Results for flexible vs. curtailable:
 - Similar reduction in violations
 - Reduced cost (~\$13M/yr, or 0.5% of total production cost)
 - Cut solar curtailments by about 1/2 (10% \rightarrow 6% for 20GW)

152

IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 12, NO. 1, JANUARY 2022

Evaluating Potential Benefits of Flexible Solar Power Generation in the Southern Company System

Qin Wang[®], Senior Member, IEEE, William B. Hobbs[®], Member, IEEE, Aidan Tuohy[®], Senior Member, IEEE, Mobolaji Bello[®], Senior Member, IEEE, and David J. Ault

(https://doi.org/10.1109/JPHOTOV.2021.3126118)

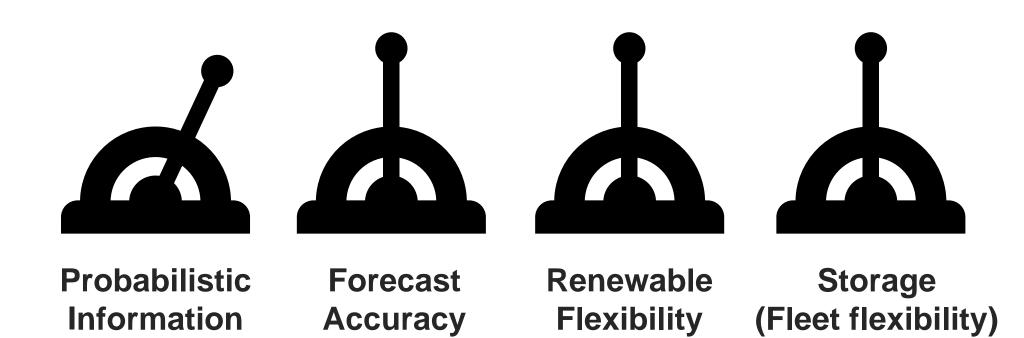
Future work:

Storage sensitivity study?

- Adding 4hr ES at 20% of PV (1.4, 4 GW) closed gap between curtailable and flexible
- How much ES is flexible solar "worth"?

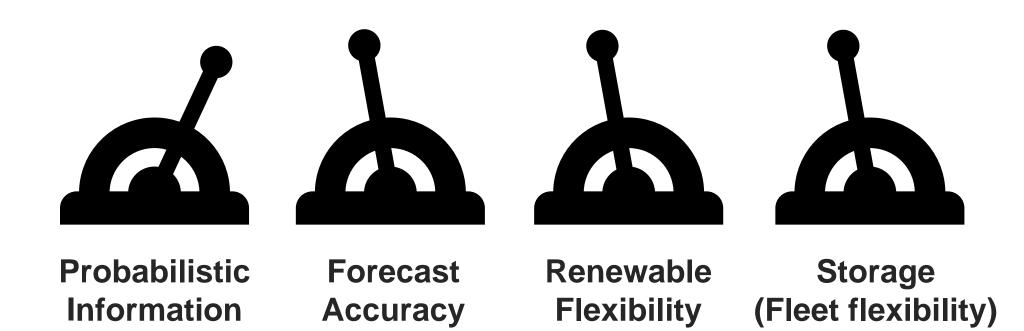
Probabilistic Forecasts?

Image: Non-StorageImage: Non-StorageImage: Non-Storage


Information

Forecast Accuracy

Renewable Storage Flexibility (Fleet flexibility)



• Improvements in any <u>one</u>...

• Improvements in any <u>one</u>... could mean less need for others

- Improvements in any <u>one</u>... could mean less need for others
- Improvements in <u>all</u> could reduce cost and increase reliability
- (flexible load, others?)

Understanding how to "actuate" these levers and what their impact will be is key to the future of the grid

Thanks for your time!

Questions: whobbs@southernco.com

