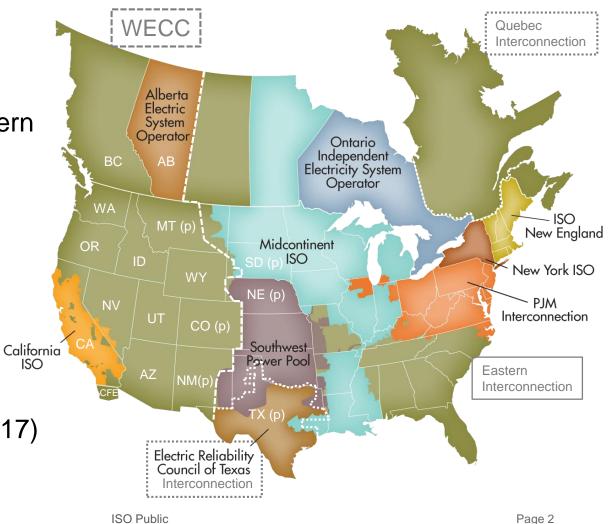


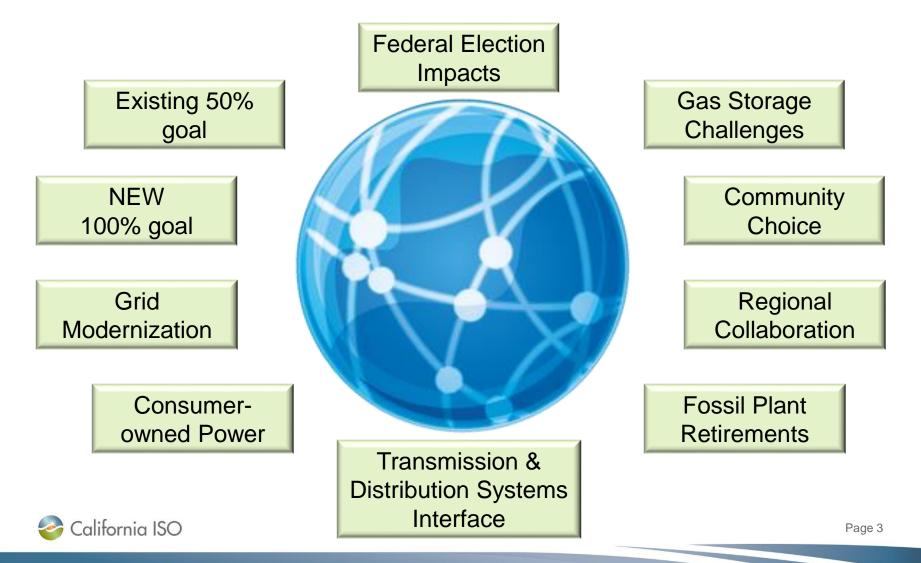
Distributed Energy Resource and CAISO's Flexibility Needs

Jill Powers

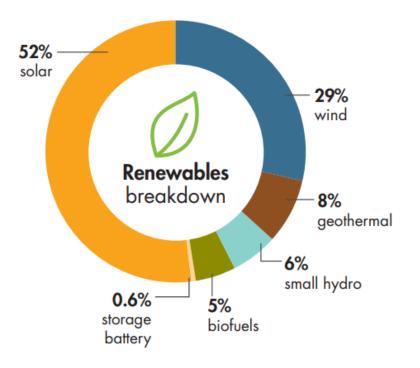

Infrastructure and Regulatory Policy, Manager

October 2, 2018

Energy Systems Integration Group (ESIG) Fall Technical Workshop Session 3C – Planning for Future Energy Systems


The California ISO

- 2/3 of the U.S. is supported by an ISO
- One of 39 balancing authorities in the western interconnection
- Serves 80% of CA & small portion of NV
- 26,000 miles of wires
- 27,000 market transactions per day
- \$9.4 billion market (2017)

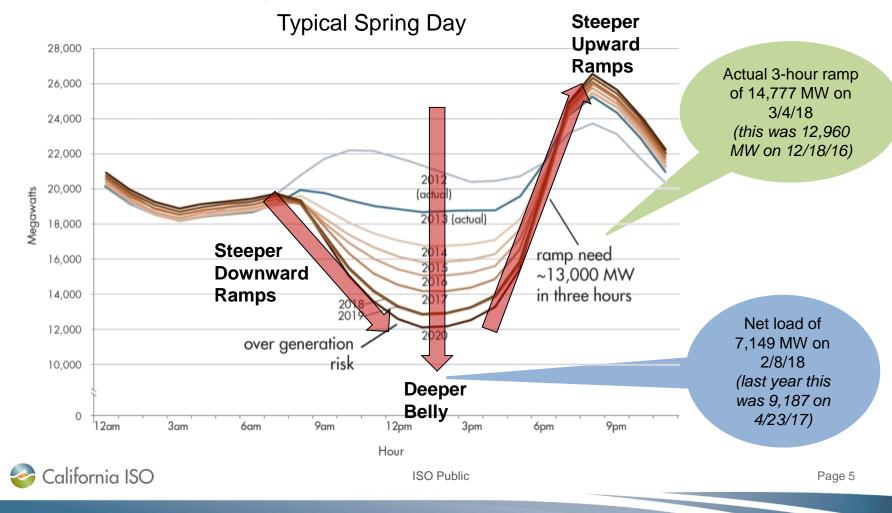


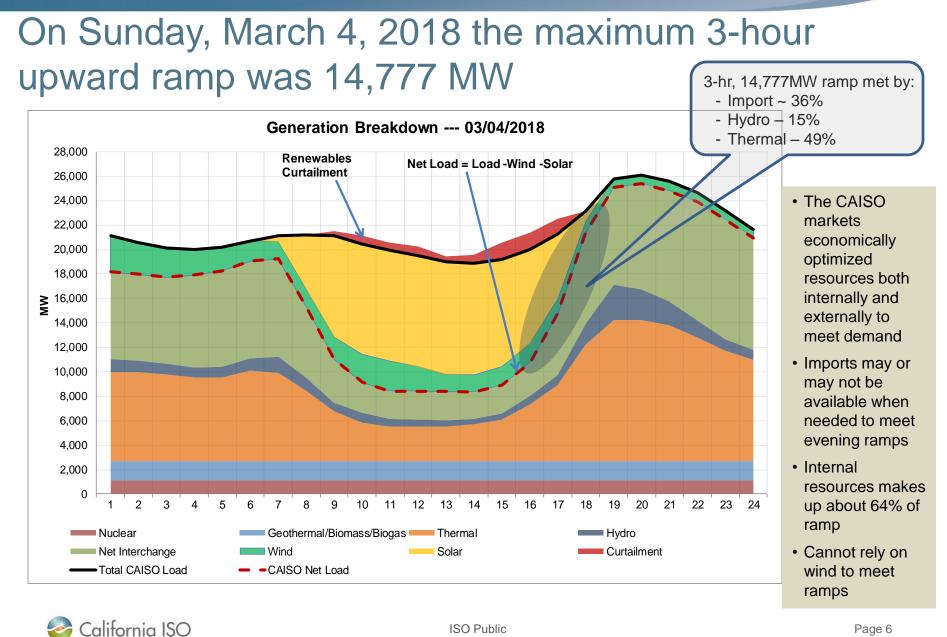
Industry in the midst of unprecedented change - Driven by fast-growing mix of interrelated issues

ISO renewable resource mix

	•
🔆 Solar	11,482
🚔 Wind	6,295
🚎 Small hydro	1,238
Geothermal	1,790
A Biofuels	1,013
Storage battery	134*
TOTAL	21,952

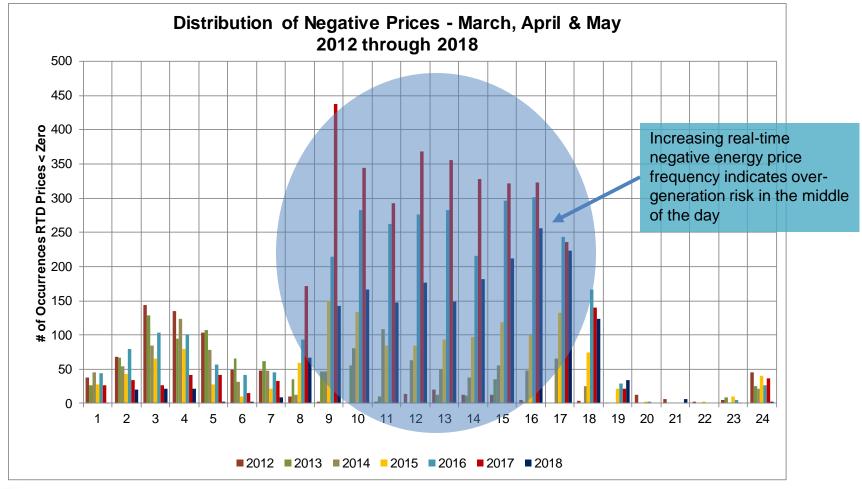
Megawatts


Record peaks


Renewables served demand 73.9% - May 26, 2018 at 2:12 p.m.

WIND (NEW) 5,193 MW - June 8, 2018, 9:04 p.m.

SOLAR (NEW) 10,735 MW - June 8, 2018, 12:33 p.m.


The duck turns 10 years old: Actual net-load and 3-hour ramps are approximately four years ahead of the ISO's original estimate

Page 6

New price patterns incentivize innovation in responsive demand and storage

A suite of solutions are necessary

Storage – increase the effective participation by energy storage resources.

Western EIM expansion – expand the western Energy Imbalance Market.

Demand response – enable adjustments in consumer demand, both up and down, when warranted by grid conditions.

Regional coordination – offers more diversified set of clean energy resources through a cost effective and reliable regional market.

Time-of-use rates – implement time-of-use rates that match consumption with efficient use of clean energy supplies.

Electric vehicles – incorporate electric vehicle charging systems that are responsive to changing grid conditions.

Renewable portfolio diversity – explore procurement strategies to achieve a more diverse renewable portfolio.

Flexible resources – invest in fastresponding resources that can follow sudden increases and decreases in demand.

The ISO, First Solar and NREL demonstrated how a 300 MW solar PV plant can provide essential reliability services

	Test	Performance
Ramping	Ramp its real-power output at a specified ramp-rate	
ping	Provide regulation up/down service	×
Voltage	 Provide reactive power support in various modes Control a specified voltage schedule Operate at a constant power factor Produce a constant level of MVAR Provide controllable reactive support (droop setting) Capability to provide reactive support at night 	×
Frequency	 Provide frequency response for low frequency and high frequency events Control the speed of frequency response Provide fast frequency response to arrest frequency decline 	×

Distribution connected resources are becoming an increasingly important part of the resource mix

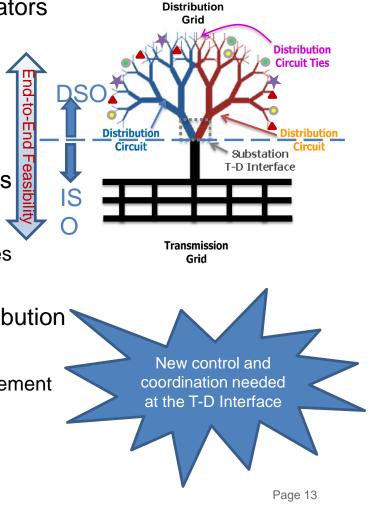
- Significant growth driven by state policies, emerging cost-effective distributed technologies and evolving customer preferences
- Opportunities for DER are expanding: DER can offer benefits/services to customers, distribution system, and transmission grid (i.e., ability to "sell up")
- Integrating DER into CAISO markets will:
 - Help lower carbon emissions
 - Provide operational benefits

The ISO has several models for energy storage and distributed energy resource (DER) participation

- Proxy Demand Resource, 2010 (PDR) Distribution
 - Supplier can aggregate multiple end-use customers to create a virtual supply resource
 - May involve other DER types behind customer meter, but will not be settled in market for net energy injection to the system (load offset only)
- Non Generator Resource, 2012 (NGR) Transmission & Distribution
 - Designed for a resource that can vary between consuming & producing energy (e.g., storage, V2G)
 - The non-generator resource (NGR) participation model recognizes a seamless operation between generation and load
- DER Provider, 2016 (DERP) Distribution
 - Create a pathway for DERs to be aggregated and meet .5 MW minimum participation requirement
 - Allows aggregations from resources in front of and behind the end-use customer meter
 California ISO

Page 11

Industry transformation is driven from the bottom up


• DER growth is driven by customer demand & adoption

- The new paradigm features
 - Substantial local supply to meet local demand
 - Multi-directional, reversible flows on distribution system
 - Multi-use DER provide services to customers, distribution and transmission domains
 - New challenges for distribution operations, planning & interconnection

Rapid DER deployment spurs the need for enhanced coordination at the T&D interface

- Diverse end-use devices and diverse owners/operators affect:
 - Load shapes, peak demand, total energy consumption
 - Energy flows, voltage variability, phase balance
 - Variability and unpredictability of net loads and grid conditions
- CAISO "sees" DER as if located at T&D substations
 - No ISO visibility to distribution grid conditions/impacts
 - Distribution utility is unaware of DER bids and dispatches

- DER providing services to customers and the distribution system affects the T&D interfaces
 - Need accurate operational forecasting and local management of DER variability to ensure end-to-end feasibility

In summary, planning for future needs to include impact of high DER penetration

- Enhanced operations coordination at Transmission–Distribution interfaces
 - Communication
 - Technology to streamline coordination
- Resource visibility and modeling
 - Real-time aggregate metering
 - Dynamic distribution of resources
- Forecasting
 - Quantity and location of resources
 - Enhance load forecast methods

THANK YOU

Stay connected

@California_ISO

Download ISO Today mobile app

Sign up for the Daily Briefing at www.caiso.com

