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A Word From Our Sponsors…

▪ Grid Modernization Laboratory Consortium (GMLC)
▪ Project 1.4.26 – Multi-Scale Production Cost Modeling

▪ Bonneville Power Administration (BPA)
▪ Funded work on high-accuracy probabilistic wind forecasting 

▪ Provide real-world data sets, publicly available



High-Level Talk Goals

▪ Somewhat surprising
▪ This is not really about stochastic unit commitment / dispatch

▪ Main lessons apply to deterministic variants as well

▪ Main theme
▪ The nature of inputs to commitment / dispatch impacts costs and 

reliability

▪ Duh! (?)

▪ The nature of forecasts matters - a lot

▪ Focus is overwhelmingly on optimization of operations, and not the 
inputs to these optimization models

▪ Much work remains in understanding the relationship between 
forecasts and system cost / performance

▪ Also key to understanding and communicating risk
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The General Structure of a Stochastic 
Unit Commitment Optimization Model
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Objective: Minimize expected cost

Wind is not modeled as must-take, allowing for curtailment without penalty



Epi-Spline Scenario Creation

▪ For a subset of hours in day (i.e., hours 1, 12, 24), calculate empirical forecast
error CDF from relevant* historical forecast/actual pairs
▪ Correlations in forecast error drop off quickly with time, allowing for independent calculations

▪ Divide distribution at cut points, and calculate the weighted average of the 
distribution between each cut point pair

▪ Apply error value to next-day forecast to obtain scenario value
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See forthcoming paper: Staid A, Watson JP, Wets RJB, Woodruff DL. Generating short-term probabilistic wind power 

scenarios via nonparametric forecast error density estimators. Wind Energy. 2017. DOI: 10.1002/we.2129



Scenario Set Comparison

▪ Current state-of-the-art method for scenario generation 
proposed by Pinson et al. uses quantile regression to produce 
a probabilistic forecast and samples from a Gaussian 
multivariate random variable

▪ We compare this to Epi-Spline scenarios using a range of cut 
point sets with increasing focus on ‘tail’ events
▪ Cut points: 0 – 0.33 – 0.66 – 1

▪ Cut points: 0 – 0.1 – 0.9 – 1

▪ Cut points: 0 – 0.05 – 0.5 – 0.95 – 1

▪ Cut points: 0 – 0.01 – 0.5 – 0.99 – 1

6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0



Application and Data

▪ Generate wind power scenarios using data from Bonneville 
Power Administration (BPA)
▪ BPA has 33 wind farms, with a total capacity of 4782 MW

▪ Using vendor-issued forecast data and actual power measurements 
from November 2015 through May 2017
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 Portland OR

 Seattle WA

BPA Wind Farm 
Locations

▪ Create day-ahead scenarios of 
aggregated wind power for 
balancing area using forecasts 
issued at 11am on previous day

▪ Rolling horizon scenario 
creation, starting February 1, 
2017 (with previous data used 
for training)



Scenario Comparison:
On a ‘Good’ Forecast Day…
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Scenario Comparison:
And on a ‘Bad’ Forecast Day…
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Scenario Comparison:
And on a ‘Bad’ Forecast Day…
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Scenario Comparison:
And on a ‘Bad’ Forecast Day…
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Scenario Comparison:
And on a ‘Bad’ Forecast Day…

12

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Hour

W
in

d
 P

o
w

e
r

actual

forecast

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Hour

W
in

d
 P

o
w

e
r

actual

forecast

Quantile Regression
March 5, 2017

Epi-Spline, CP: 0-0.01-0.5-0.99-1
March 5, 2017



Assessing Scenario Quality

▪ Visual comparisons only get you so far…

▪ There are a number of proper scoring rules used to evaluate 
probabilistic forecasts and scenarios
▪ Energy Score (has known discrimination issues)

▪ Brier Score (event-based, need to know what you care about upfront)

▪ Variogram Score (improved discrimination using pairwise differences)

▪ However, ultimate test of quality is performance in a real-
world system
▪ We simulate ‘real-world’ using unit-commitment optimization

▪ Scenarios should represent a wide enough range of plausible wind 
power realizations to ensure a feasible solution as the future unfolds

▪ However, too wide of a range will drive costs up unnecessarily
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Plots/Results of Metrics
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▪ Slight, but inconsistent 
differences between Epi-
Spline and Quantile 
Regression scenarios

▪ Virtually no discrimination
among cut point sets of 
Epi-Spline scenarios

▪ The best metrics cannot 
tell us much about scenario 
quality



Re-enactment Methodology

▪ Stochastic day-ahead unit commitment optimization model applied 
to small, five-generator network (Max demand ~1400 MW)
▪ Copper plate model, ignoring network flows

▪ Hourly, rolling-horizon simulation with economic dispatch on the hour

▪ Not carrying additional reserves, as scenarios should capture required flexibility

▪ Stochastic wind power scenarios use real data from BPA
▪ Scale wind power to assess different wind penetration levels

▪ Create day-ahead scenarios based on vendor-issued forecast, determine generator 
commitments, simulate system performance on realized actual wind power values

▪ Evaluate different scenario sets and wind penetration levels
▪ Comparing cost (fixed and variable), renewables used and curtailed, over-

generation, and out-of-market load

▪ Have started work on larger test systems, but full results are pending
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Unit Commitment Performance

▪ Costs are comparable in deterministic and stochastic solutions

▪ However, we do not account for the cost of procuring additional 
generation in real-time to serve the out-of-market load (not met in day-
ahead market)
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Stochastic vs Deterministic
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Deterministic: 2017-03-18
CP: 0 – 0.01 – 0.5 – 0.99 – 1 

Stochastic: 2017-03-18
CP: 0 – 0.01 – 0.5 – 0.99 – 1 

Large reduction in load-not-met 
and elimination of reserve 
shortfall in stochastic case



Stochastic vs Deterministic
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Compare Scenario Sets: Cost
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Scenario Sets

▪ Slight generation cost 
variation among scenario 
sets

▪ Wider sets have higher 
costs, to deal with the 
increased variability

▪ However, this doesn’t 
account for the cost of 
procuring additional 
generation that isn’t met 
in day-ahead scheduling



Compare Scenario Sets: Curtailment
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Scenario Sets

▪ More curtailment 
with quantile 
regression scenarios

▪ Thermal generation 
often cannot 
respond fast enough 
for extreme ramps in 
wind
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Compare Scenario Sets: 
Out-of-Market Load – All Penetration Levels
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Scenario Sets

Out of Market Load by Scenario Set
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▪ More out-of-market 
load with quantile 
regression scenarios

▪ Mean value is lowest 
for the widest cut 
point set, as the 
scenarios are able to 
capture more 
potential variability
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2017-04-02
CP: 0 – 0.33 – 0.66 – 1 

2017-04-02
CP: 0 – 0.01 – 0.5 – 0.99 – 1 

Reduction in load-not-met 
with wider cut point set

Commitments change significantly 
between cut point sets

Single Day Commitments



Wind Penetration Level: Curtailment
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Wind Scaling Factor: 0.1
Avg. Curtail: 0.24 MWh/day

Wind Scaling Factor: 0.2
Avg. Curtail: 36 MWh/day

Wind Scaling Factor: 0.3
Avg. Curtail: 595 MWh/day

Wind Scaling Factor: 0.4
Avg. Curtail: 1885 MWh/day

▪ Scaling factor is in 
relation to total 
capacity of BPA 
system

▪ Renewable 
penetration is 11, 22, 
31, and 38%, 
respectively

▪ Curtailment increases 
sharply with increased 
renewable 
penetration



Wind Penetration Level:
Out-of-Market Load
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Wind Scaling Factor: 0.1
Avg. Load not Met: 5.2 MWh/day

Wind Scaling Factor: 0.2
Avg. Load not Met: 5.9 MWh/day

Wind Scaling Factor: 0.3
Avg. Load not Met: 13.6 MWh/day

Wind Scaling Factor: 0.4
Avg. Load not Met: 23.9 MWh/day

▪ Increased wind results 
in more out-of-market 
load, but the 
differences are small 

▪ Still only see this 
happen on very few 
days overall
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2017-04-02
CP: 0 – 0.33 – 0.66 – 1

Wind Scaling Factor 0.2 

2017-04-02
CP: 0 – 0.33 – 0.66 – 1 

Wind Scaling Factor 0.4

Large increase in load-not-
met with higher renewable 

penetration level

Single Day Commitments

Significant changes to unit 
commitment (as expected)



Future Work

▪ Evaluation of additional scenario sets
▪ Assess value of scenarios that explicitly incorporate wind power ramp 

events

▪ Look at performance of simple methods used in literature, compare to 
methods presented here

▪ Run re-enactment on larger test cases 
▪ Have started on WECC 240 case, with results pending

▪ Increase wind penetration levels to assess scenario performance at 
high renewable levels

▪ Assess performance over a longer date range
▪ Incorporate more variability, both in seasonal wind and load

▪ Different wind dataset, if possible
▪ Evaluate scenario creation methodology on additional wind sites, as 

ramp behavior and wind variability vary by location
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Questions? 

▪ Contact:
▪ Jean-Paul Watson, jwatson@sandia.gov
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▪ U.S. Department of Energy’s ARPA-E, Green Energy Network 
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