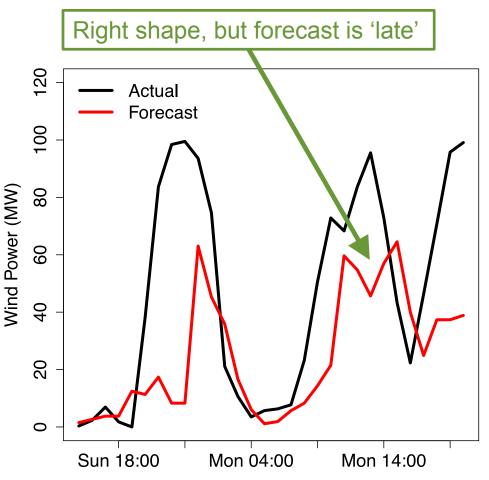


Exceptional service in the national interest

Data-Driven Approaches for Wind Power Ramp Timing at BPA

Andrea Staid and Randy C. Brost UVIG Fall Technical Workshop October 11, 2017

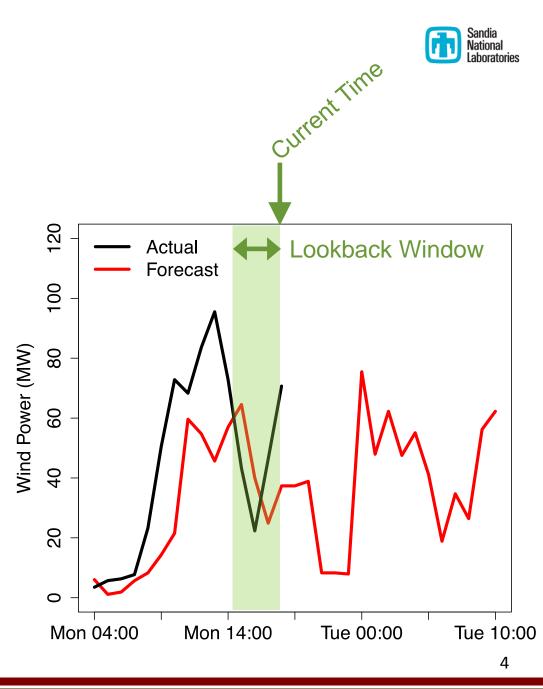
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

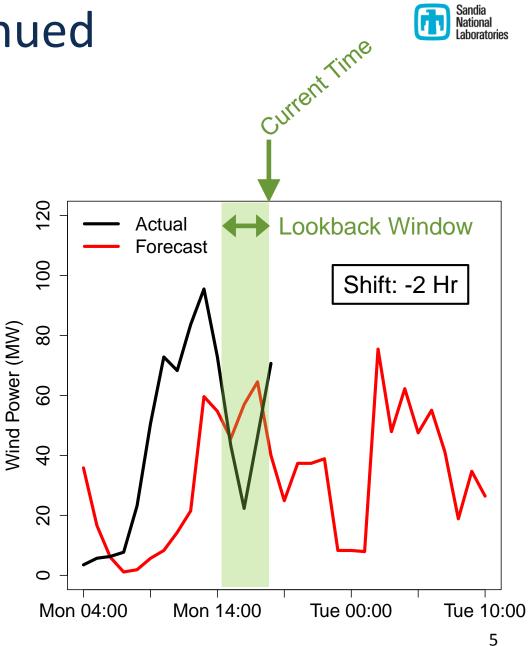


SAND2017-10842 C

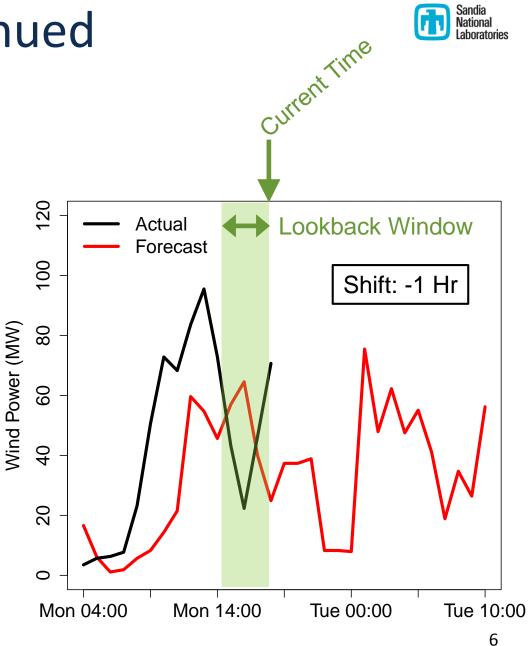
Motivation

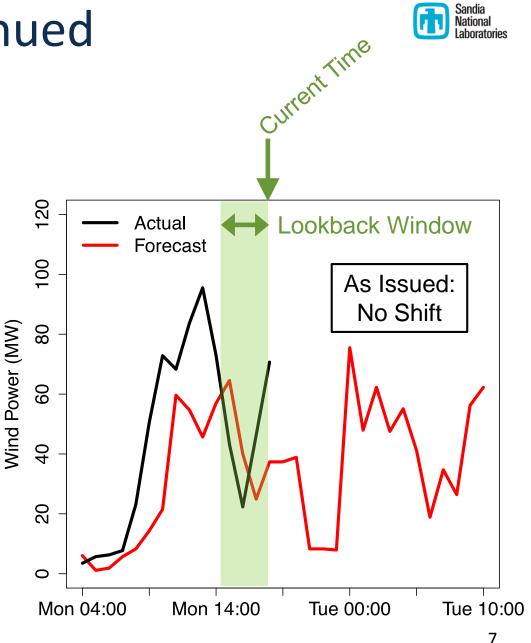
- We've been working with BPA forecast and actual wind power data for some time
 Right shape, but forecast is
- Previous work focused on analyzing and trying to reduce forecast errors
- Large focus on errors in magnitude – for an individual hour, improve the power estimate for that hour
- However, many observed forecast errors are errors in time!

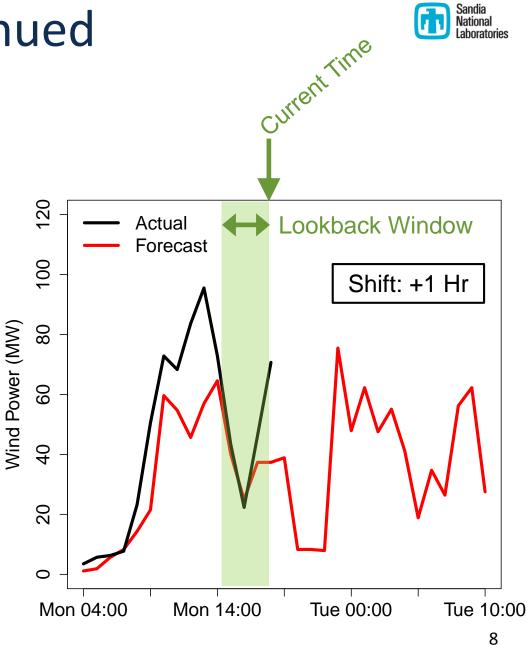

Motivation, Continued

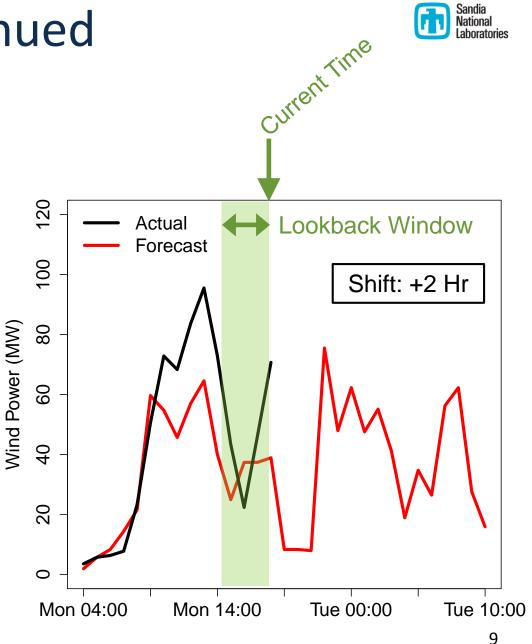

- Forecast errors in time are likely to persist across hours
 - Forecast models may miss the timing of weather events, but not the events themselves
 - E.g., predicting a ramp an hour or two earlier than it occurs
- Hypothesis:
 - If we can detect these timing offsets, we can apply said offset to the near-future forecast hours
 - By studying forecast and actual wind power traces, are there obvious shifts in timing of events?
 - Would a time-shifted forecast vector match the actual values more closely?

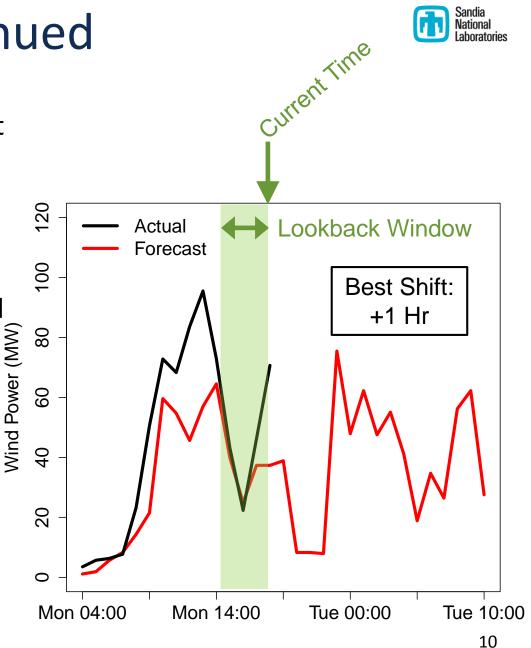
Algorithm


- At current time, look back at recent forecast/actual trace of wind power in lookback window
- Calculate integrated error between forecast and actual in window

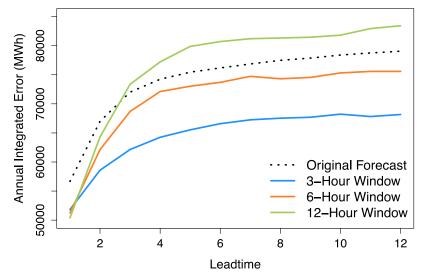

- At current time, look back at recent forecast/actual trace of wind power in lookback window
- Calculate integrated error between forecast and actual in window
- Assess error if forecast had been shifted forward or backward in time


- At current time, look back at recent forecast/actual trace of wind power in lookback window
- Calculate integrated error between forecast and actual in window
- Assess error if forecast had been shifted forward or backward in time


- At current time, look back at recent forecast/actual trace of wind power in lookback window
- Calculate integrated error between forecast and actual in window
- Assess error if forecast had been shifted forward or backward in time


- At current time, look back at recent forecast/actual trace of wind power in lookback window
- Calculate integrated error between forecast and actual in window
- Assess error if forecast had been shifted forward or backward in time

- At current time, look back at recent forecast/actual trace of wind power in lookback window
- Calculate integrated error between forecast and actual in window
- Assess error if forecast had been shifted forward or backward in time


- At current time, look back at recent forecast/actual trace of wind power in lookback window
- Calculate integrated error between forecast and actual in window
- Assess error if forecast had been shifted forward or backward in time
- Identify shift with lowest error and take corresponding forecast value as new prediction

Initial Analysis

- Early attempts at demonstrating functionality of our method:
 - Evaluating data with set lead-time, applying shift to next hour
- Results showed promise
 - Large error reductions compared to original forecast

- Smaller lookback windows resulted in largest error reductions
 - Most recent past is most indicative of near-future
- However, this approach relied on outdated data!
 - E.g., applying 4-hr lead-time data to the next hour
 - In reality, you'd use 1-hr lead-time forecast
- Need to change to a real-time data context; using the best possible data that an operator would actually have available

Real-Time Forecast Shift

- After identifying 'best' shift, apply new forecast value as prediction for the hour of interest
 - If shift is positive, take value for later lead-times from forecast vector for the same issue-time

Original Forecast

- If shift is negative, take value for earlier lead-times from forecast vector until current time
 - If you reach current time, use actual values

Issue Time	Hr1		Hr2		Hr3		Hr4	Hr5	Hr6
6/3/16 9:00		30.6		44.9	64	4.9	73.0	73.0	66.5
6/3/16 10:00		90.5		90.5	90	0.5	86.9	78.1	69.7
6/3/16 11:00		90.5		90.5	90	0.5	83.3	71.3	47.5
6/3/16 12:00		24.5		28.5	32	2.8	31.7	15.1	3.1
6/3/16 13:00		1.6		3.1		4.2	2.1	0.3	0.0
6/3/16 14:00		1.4		1.6	(0.8	0.1	0.0	0.0
6/3/16 15:00		12.2		5.9	(0.9	0.1	0.0	0.0
6/3/16 16:00		53.0		20.8		4.2	0.9	0.3	0.3

For Example:

Real-Time Forecast Shift

For

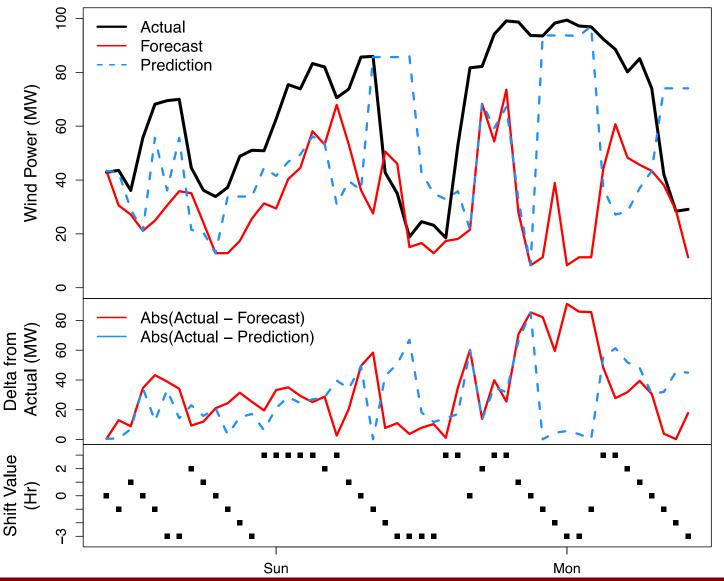
- After identifying 'best' shift, apply new forecast value as prediction for the hour of interest
 - If shift is positive, take value for later lead-times from forecast vector for the same issue-time
 - If shift is negative, take value for earlier lead-times from forecast vector until current time
 - If you reach current time, use actual values going back in time

		Orig	inal	Fore	cast	S	Shift:	+2 ⊢	Ir	
Example:	Issue Time	Hr1	Hr2		Hr3		Hr4		Hr5	Hr6
	6/3/16 9:00	30.6		44.9	6	54.9		73.0	73.0	66.5
	6/3/16 10:00	90.5		90.5	9	90.5		86.9	78.1	69.7
	6/3/16 11:00	90.5		90.5	9	90.5		83.3	71.3	47.5
	6/3/16 12:00	24.5		28.5				31.7	15.1	3.1
	6/3/16 13:00	1.6		3.1		4.2		2.1	0.3	0.0
	6/3/16 14:00	1.4		1.6		0.8		0.1	0.0	0.0
	6/3/16 15:00	12.2		5.9		0.9		0.1	0.0	0.0
	6/3/16 16:00	53.0		20.8		4.2		0.9	0.3	0.3

Real-Time Forecast Shift

- After identifying 'best' shift, apply new forecast value as prediction for the hour of interest
 - If shift is positive, take value for later lead-times from forecast vector for the same issue-time
 - If shift is negative, take value for earlier lead-times from forecast vector until current time
 - If you reach current time, use actual values going back in time

	Shift: ≤ -2 Hr			rigi	nal	Fore	cast				
For Example:	Issue Tir	ne	Hr1	F	Hr2		Hr3	Hr	4	Hr5	Hr6
	6/3,	16 9:00	30	0.6		44.9	64	9	73.0	73.0	66.5
	6/3/2	<mark>6</mark> 10:00	9).5		90.5	90	5	86.9	78.1	69.7
You've gone too far! Use	6/3/	<u>.</u> 6 11:00	9).5		90.5	90	5	83.3	71.3	47.5
actual measured values	6/3/1	l6 12:00		1.5		28.5	32	8	31.7	15.1	3.1
instead	6/3/1	L6 13:00		1.6		3.1	4	2	2.1	0.3	0.0
	6/3/1	l6 14:00		1.4		1.6	0	8	0.1	0.0	0.0
	6/3/1	L6 15:00	12	2.2		5.9	0	9	0.1	0.0	0.0
	6/3/1	L6 16:00	5	3.0		20.8	4	2	0.9	0.3	0.3


Testing the Algorithm

- Data from 33 wind projects in BPA balancing area
- Applied algorithm at the project level, using vendor-issued forecasts for each project
 - Assessed forecast performance vs 'prediction' from algorithm for one year, stepping forward in hourly increments
- Tested for varying lead-times, lookback window sizes, and maximum allowed shift values

What does this look like?

Single wind project, 1-hour lead time

Errors are smaller on average, but still miss some hours

For this time period:

- RMSE of Original Forecast: 40.5
- RMSE of New Prediction: 34.6

Preliminary Results

- Error reductions seen for some wind projects, but not all
 - More analysis needed to determine why, and under what conditions it fails
- In real-time data context, improvements seen only for very short lead times (1-2 hours)
- Greatest improvements seen for small lookback window, and small maximum shift value
 - This is good news! The forecasts are generally fairly accurate, and benefit the most from small adjustments

Preliminary Results

Error results for projects that see forecast improvements:

ЭC	Wind Project	RMSE: Forecast	RMSE: Prediction	Annual Production (MWh)	Annual Savings (MWh)	Annual Savings (%)
Time	А	18.3	17.6	236,021	6,022	2.6%
	В	21.2	19.2	204,509	7,136	3.5%
Lead	С	18.6	17.6	244,459	4,597	1.9%
	D	17.3	16.8	185,649	4,344	2.3%
Inc	E	22.9	19.8	201,838	12,018	6.0%
Hour	F	20.0	17.8	196,161	6,728	3.4%
,	G	22.7	20.0	203,610	9,548	4.7%
Time	Wind Project	RMSE: Forecast	RMSE: Prediction	Annual Production (MWh)	Annual Savings (MWh)	Annual Savings (%)
Ē	А	18.6	18.7	235,309	(108)	0.0%
ead	В	21.6	21.7	204,082	(3,160)	-1.5%
.e	С	18.8	18.8	243,837	(2,271)	-0.9%
Ir L	D	17.4	17.5	185,084	(890)	-0.5%
no	E	23.0	22.5	201,394	260	0.1%
2-Hour	F	20.2	19.6	195,715	263	0.1%
2	G	23.1	22.3	203,254	1,237	0.6%

* All projects have been normalized to 100MW capacity

18

Conclusions

- This is very much research in progress... but results look promising
 - Small per-project forecast improvements can lead to large aggregate savings in system operations
 - Better estimates of timing offsets can be combined with improvements in prediction intervals of wind power magnitude
 - The shift estimate alone can be used as a useful metric for improved situational awareness, indicative of whether or not forecasts are running late or early across the system
- Much more to be done here, but suggestions are welcome!

Questions?

Contact:

Andrea Staid, astaid@sandia.gov

Thanks to the Bonneville Power Administration for providing access to their data!