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Key Messages
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N\ /
- - Information from a spatial grid of NWP improve
N forecasting skill

N\ /7
- - PV sites can collaborate to improve forecasting
N skill and keep data private

N\ /
- - Grey box models can aggregate behind-the-meter
N information from flexible energy resources
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General Data Protection Regulation (GDPR) Hype

Opinion

Europes Data Protection Law
Is a Big, Confusing Mess

By Alison Cool
Ms. Cool is a professor of anthropology and information science at the University of Colorado, Boulder.
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Data protection: Obsession or human
right—will new policies kill Al innovation
in Europe?
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GDPR: Balancing Privacy And Innovation To Create
Opportunities In Banking
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GDPR: The foundation for innovation

By Felix Marx 14 days ago Internet

What benefits can GDPR bring for your business?

0000

Re-think innovation towards distributed learning, federated learning and models

=/ marketplace
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Main benefits

(distributed) forecasting with
data privacy

Explore spatial-temporal
measurements and NWP grid
data to improve forecasting
accuracy

 Business case for collaborative
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Sell NWP Grid Data Features

3 day(s)-ahead horizon
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Models

Marketplace

NWP grid

HEMS extracted goy

(A1 Model receives processed
features mssm | NWP-based features

J.R. Andrade, R.J. Bessa, "Improving renewable energy forecasting with a grid of numerical weather predictions”, IEEE Transactions on Sustainable Energy,
vol. 8, no. 4, pp. 1571-1580, Oct. 2017.




© NWP Spatial Grid Features — PV Client
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= PV Client Statistical Model
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‘Iﬂ Temporal Features _

Z + Point Forecasts Spatial Features
o
* Weather forecasts NWP for the Grid of NWP

client location

!

golnstr.alned Global Optimization Bayesian
olver: _ Optimization

« Parameter tuning

» Feature creation l

Gradient Boosting
Trees Regressor

!

* Point Forecasts PV power
* Probabilistic Forecasts forecasts

» Forecasting tool




< lllustrative Forecasts for a Building in Porto
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Probabilistic forecasts:
* Uncertainty better modeled around the observed values
« “Abnormal” uncertainty verified in clear-sky days is removed

Point forecasts:
 Some of the over/underestimation situations are solved
* Improvements on the peak power forecasting in some clear-sky days




Forecasting Accuracy for a Building in Porto

FEATURES CONSIDERED IN EVERY FORECASTING MODEL
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Base Model Inputs Domain 1D Features
Month
Chronological H Tl Lags and leads
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9 Exchange Models Constructed with Distributed PV
=
S Measurements
% 5 hour(s)-ahead horizon
0%
o
A44L
Models a2
Marketplace
o
A44L
ADMM 50 .
matrices .E (A data is LOCAL and peers
Cooor | exchange ADMM matrices

L. Cavalcante, R. J. Bessa, M. Reis, J. Dowell, "LASSO vector autoregression structures for very short-term wind power forecasting,” Wind Energy, vol. 20, no.
4, pp. 657-675, April 2017.
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VAR Model for Geographically Distributed PV Data

Example: matrix format for 2 PV sites
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9 Important Characteristics for the VAR Model
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ADMM - alternating direction method of multipliers

1LV

Break up large datasets into blocks and carry out
the VAR fitting over each block

Does not guarantee data privacy
(—next slides)
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2 Centralized LASSO-VAR Model No private data shared
g Y=BZ+E between PV agents
2 ':c:):' Pl,t—2 Pl,t—l Pl,t VAR(Z)
141 —t— 3PV

Neutral agent has direct access
to private data
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Centralized LASSO-VAR Model No private data shared

Y=BZ+E between PV agents
|
_() - Transform the data using -:c'):- p1t2 p1tl plt VAR(2)
\ matrix multiplication ' ,
3 PV

Y1 = (P1t Pitin)Q
Matrix @ invertible and such B(l) B(Z) ( = = (Prt-1 - Pre+n-1)Q
T _ ( ) — (P P
that QQT =1 (Pit-2 - Prt+n-2)Q

Defined | Neutral Agent
and
shared
between
PV agents
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If QQT = I then the ADMM VAR-LASSO solution for Y = BZ and YQ = BZQ remains the same



Results for a Smart Grid Pilot

RMSE improvement (%) of the cLV structures
using a sliding window approach over AR model.
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Time Horizon(h)

0.7
Coefficients matrices of the cLV
0.42 - structure for first lead-time
(lags 1,2 and 24 h)
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Behind-the-Meter Flexibility
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Communicate
Models flexibility with
machine learning OR
virtual dynamic
batteries

Marketplace

R.J. Bessa, D. Rua, C. Abreu, P. Machado, J.R. Andrade, R. Pinto, C. Gongalves, and M. Reis, "Data economy for prosumers in a smart grid ecosystem," in Proc.
of the e-Energy '18: The Nineth International Conference on Future Energy Systems, June 12-15, 2018, Karlsruhe, Germany.

R.B. Pinto, R.J. Bessa, M.A. Matos, "Multi-period flexibility forecast for low voltage prosumers,” Energy, vol. 141, pp. 2251-2263, Dec. 2017.
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Energy Management & Flexibility Trajectories

PV Load Storage & electric
Extornal | Mobile uncertainty  uncertainty = water heaters technical
| Services Devices forecasting  forecasting characteristics
o
. |
I
Mobile :
@ Devices | : . .
\ Feasible trajectory
D e Energy ! : search algorithm
: Optimization : : EPSO
: Notificati Device Jl Devices, B . L
E otincations LT Meters, E 20 Feasible Flexibility Trajectories
I i | Sensors

Home Energy Management System (HEMS)
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Flexibility as a Data-Driven Model

support vector data
description (SVDD)
R*() =1-2) i+ k(x, )

+Zﬁi - By - k(i x;)
P

20 Feasible Flexibility Trajectories
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two products

Power [MW]

Dynamic “virtual” battery

-1.5

» SOC™MaX yvary. with time t
20 07':45'03‘:15'03':45'09':15'09!45'ﬁﬁti'lohs'n!ls'11!45'12:'15'12:'45 p Pmax Vary. W|th t|me t

_\ /_ Sell flexibility models instead of exchanging
N behind-the-meter data from prosumers




Concluding Remarks
FEATURE EXTRACTION

can lead to significant forecasting
skill improvement

MODEL-BASED SERVICES

Trade models, instead of data or
forecasting services
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|] STANDARDIZATION

Opportunities
_0 Standards are needed..

&
Challenges

EMBEDDED SYSTEMS

“Light” distributed and online
statistical learning algorithms

PRIVACY-PRESERVING ANALYTICS

Data-driven models compatible with GDPR and
client concerns

N + A SCALABILITY
6 * Peer-to-peer schemes with

K ; ﬂ asynchronous communication

Lo
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