Distributed PV Forecasting and Data Marketplace in an Era of Data Privacy Concerns

Ricardo Bessa, rbessa@inesctec.pt

ESIG 2018 Forecasting Workshop - St. Paul, MN

20 June 2018

with Carla Gonçalves, Ricardo Andrade, Laura Cavalcante, INESC TEC

INSTITUTE FOR SYSTEMS AND COMPUTER ENGINEERING, TECHNOLOGY AND SCIENCE

Key Messages

- Information from a spatial grid of NWP improve forecasting skill

- PV sites can collaborate to improve forecasting skill and keep data private
- Grey box models can aggregate behind-the-meter information from flexible energy resources

General Data Protection Regulation (GDPR) Hype

Ms. Cool is a professor of anthropology and information science at the University of Colorado, Boulder.

Data protection: Obsession or human

right—will new policies kill AI innovation

⊠ →

Europe's Data Protection Law

Follow Y

Is a Big, Confusing Mess

EDITOR'S CHOICE SUBMIT GET SMARTER AT BUILDING STARTUPS

in Europe? 🨕

GDPR: Balancing Privacy And Innovation To Create Opportunities In Banking

Image: Step Seeing this ad Ad closed by Google Image: Step Seeing this ad Step Seeing this ad Image: Step Seeing this ad Why this ad? D

GDPR: The foundation for innovation

By Felix Marx 14 days ago Internet

What benefits can GDPR bring for your business?

G 💟 😰 🖸

Opinion

By Alison Cool

May 15, 2018

M

The Startup 🔎

Re-think innovation towards distributed learning, federated learning and models marketplace

Data Models Marketplace for PV Forecasting

Main benefits

- Business case for <u>collaborative</u> (distributed) forecasting with <u>data privacy</u>
- Explore spatial-temporal measurements and NWP grid data to improve forecasting accuracy

Sell NWP Grid Data Features

J.R. Andrade, R.J. Bessa, "Improving renewable energy forecasting with a grid of numerical weather predictions", IEEE Transactions on Sustainable Energy, vol. 8, no. 4, pp. 1571-1580, Oct. 2017.

NWP Spatial Grid Features \rightarrow PV Client

6

PV Client Statistical Model

Illustrative Forecasts for a Building in Porto

Probabilistic forecasts:

- Uncertainty better modeled around the observed values
- "Abnormal" uncertainty verified in clear-sky days is removed

Point forecasts:

- Some of the over/underestimation situations are solved
- Improvements on the peak power forecasting in some clear-sky days

Forecasting Accuracy for a Building in Porto

FEATURES CONSIDERED IN EVERY FORECASTING MODEL

Base Model Inputs						Domain		D Features		
Chronological	Month					Temporal		Lags and leads		
		Hour						σ_{time}^2 and different NWP runs		
	Surface downwelling shortwave flux [W/m ²]							Combination of models T1 and T2 inputs		
NWP forecasts for	Cloud action at low levels [0, 1]					Spatial		$\sigma_{spatial}$ and $\bar{x}_{spatial}$		
he location of interes	Cloud cover at now levels [0, 1]							Principal components		
(INESC-TEC)	Cloud cover at medium levels [0, 1]							Combination of models S1 and S2 input		
	Cloud cover	Cloud cover at low and medium levels [0, 1]				Temporal & Spatial		Combination of both domain features		
18 16 14 12 10 8							Lo	ocal Temporal Information	Grid Spatial Information	
								Combina temporal & inputs	ation spatial s	
T1	T2 T	S1	S2	S	F	Almeida		(Dest overall model)		
		Mo	odels							

Exchange Models Constructed with Distributed PV Measurements

L. Cavalcante, R. J. Bessa, M. Reis, J. Dowell, "LASSO vector autoregression structures for very short-term wind power forecasting," Wind Energy, vol. 20, no. 4, pp. 657-675, April 2017.

VAR Model for Geographically Distributed PV Data

Example: matrix format for 2 PV sites

Important Characteristics for the VAR Model

ADMM - alternating direction method of multipliers Break up large datasets into blocks and carry out the VAR fitting over each block

Does not guarantee data privacy (→next slides)

Centralized LASSO-VAR Model No private data shared between PV agents $\mathbf{Y} = \mathbf{B}\mathbf{Z} + \mathbf{E}$ Transform the data using matrix multiplication $\begin{array}{c} \dot{\mathbf{x}} \\ \mathbf{A} \end{array} \qquad \begin{array}{c} \cdots \\ \mathbf{P}_{1,t-2} \end{array} \begin{array}{c} \mathbf{P}_{1,t-1} \end{array} \begin{array}{c} \mathbf{P}_{1,t} \\ \mathbf{P}_{1,t} \end{array}$ Matrix *Q* invertible and such that $QQ^T = I$ Defined **Neutral Agent** and shared between PV agents . . . $\cdots P_{2,t-2} P_{2,t-1} P_{t,2}$ $\dot{P}_{3,t-2}$ P_{3,t-1} P_{3,t}

If $QQ^T = I$ then the ADMM VAR-LASSO solution for Y = BZ and YQ = BZQ remains the same

111, _____

VAR(2)

3 **PV**

Results for a Smart Grid Pilot

Behind-the-Meter Flexibility

R.J. Bessa, D. Rua, C. Abreu, P. Machado, J.R. Andrade, R. Pinto, C. Gonçalves, and M. Reis, "Data economy for prosumers in a smart grid ecosystem," in Proc. of the e-Energy '18: The Nineth International Conference on Future Energy Systems, June 12–15, 2018, Karlsruhe, Germany.

R.B. Pinto, R.J. Bessa, M.A. Matos, "Multi-period flexibility forecast for low voltage prosumers," Energy, vol. 141, pp. 2251-2263, Dec. 2017.

Energy Management & Flexibility Trajectories

Home Energy Management System (HEMS)

This project is funded by the European Union

Flexibility as a Data-Driven Model

- Sell flexibility models instead of exchanging behind-the-meter data from prosumers

Concluding Remarks

MODEL-BASED SERVICES

Trade models, instead of data or forecasting services

FEATURE EXTRACTION

can lead to significant forecasting skill improvement

EMBEDDED SYSTEMS

"Light" distributed and online statistical learning algorithms

PRIVACY-PRESERVING ANALYTICS

Data-driven models compatible with GDPR and client concerns

SCALABILITY Peer-to-peer schemes with asynchronous communication

f in y D 🕑

www.inesctec.pt

INESC TEC •

• PORTUGAL

•

- R DR. ROBERTO FRIAS •

4200-465 PORTO

- T +351 222 094 000 F +351 222 094 050 info@inesctec.pt

