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Decarbonization imperatives will lead to massive
increases in wind and solar generation

+ Wind and solar are the lowest-cost
sources of carbon-free energy in every
region of the United States

<+ Electric loads may increase by 50-100%
due to electrification, requiring more
clean electricity

+ Massively increased reliance on weather-
dependent resources will require much
more intelligent and dynamic operating
procedures
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@ Need for grid services will grow with higher penetrations

of wind and solar generation

+ Grid operators have always
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Lilblﬁti‘e? Source: E3, Predicting Reserve Needs Using Machine
CHANGING WHAT'S POSSIBLE Learning, prOjeCt partlally funded with grant from ARPA-E
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@ E3 received a grant from ARPA-E to develop a machine-
learning model for dynamic operating reserve calculation

Machine learning generates reserve PLEXOS production simulation of Summary and CAISO Comparison
needs using artificial neural network CAISO system validates operability y P
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@ ARPA-E study focused on CAISO Flexible Ramping

Product (FRP) as a proof-of-concept

+ FRP is a 15-minute reserve
product implemented in
CAISO’s Energy Imbalance
Market

« Ensures each participating BAA
has sufficient flexibility for the
EIM to clear

* FRP is a requirement for EIM
participation but is not a cleared
market product

+ Machine learning model can
provide additional benefits if
extended to other
timeframes:

- Day ahead market, 5-minute
market, Regulation (sub 5-min)
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CAISO Market Timeline
Day-Ahead Real Time

FRP, FRPy,

Hour-
Day-Ahead Ahead
Market Scheduling
Process

Fifteen Five
Minute Minute
Market Market

Our project calculates 15-minute Flexible Ramping Product

(FRP) Up and Down requirements
The goal of 15-minute FRP is to reserve enough flexibility for
successful 5-minute market operation




@ RESERVE Machine learning model inputs

+ RESERVE takes in load, wind and solar forecasts and assembles them into a composite
net load forecast error distribution using an artificial neural network

The time when Calendar information for Ty+15

prediction is made « Hour of day

- Day of year
Near Past "l » Near Future l - Day since start of training period
T.-30 T.-15 T -|-0+15 « Index for 5-minute interval
0 0 0

15-min market forecasts for Demand, Solar, and Wind

A
i Three prediction targets:
i forecast error between 15-
e ! minute forecast at T,+15
and 5-minute forecasts at
T,+15, T,+20, and T,+25

Trained model uses T,-30 to T,-5
5-minute forecasts and Ty-30 to
T,+15 15-minute forecasts to
predict near-future forecast error

\ 4

5-min market forecasts for Demand, Solar, and Wind
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Example day machine learning model timeseries show

ability of machine learning to predict forecast error
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CAISO’s historical lookback reserves are not as dynamic

as E3’s machine learning reserves

CAISO’s current “histogram” method uses a rolling 20-40 day window before
the current day to calculate reserves needs
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@ Machine learning predictions capture error trends as a

function of renewable generation

Lookback reserves are too
2000 Forecast Error of Net Demand high during very sunny hours

(demand — wind - solar)
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@ RESERVE performance is a significant improvement

compared to CAISO histogram method

Headroom Footroom
Performance o . (Upward Ramping) (Downward Ramping)
Metri Definition Units
etrie CAISO RESERVE CAISO RESERVE
Incumbent Incumbent
Percent of forecast errors
+ RESERVE gets close to
Coverage covered by reserve requirement % 94.4 97.3 92.8 96.6
97.5% coverage target
(target is 97.5% coverage)
i ﬁ
4+ RESERVE reduces FRP Average Average of predicted forecast MW 76 514 - -
need by 20% on average Requirement error at targeted quantile
_ N A Average size of excesses when
i verage
+ RESSEO?/VE S I:TIISSGS . i observed forecast error exceeds MW 234 152 220 175
xceedin
are o smailer é model prediction
+ RESERVE max misses Maximurm Maximum size of excess when
are much smaller Exceeding observed forecast error exceeds MW 3,353 1,705 2,652 1,983
model prediction

Note: CAISO is updating to a quantile regression methodology which is expected to
improve performance metrics relative to the incumbent histogram method
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@ RESERVE performance advantage is magnified under

extreme forecast error events

+ Under extreme net load underforecast, BRI Tk (Dl e Igises
RESERVE significantly reduces
exceedance versus the CAISO histogram

error during extreme net load
under-forecasts

CAISO Historical E3 Machine
method Look-back (Histogram) Learning
+ RESERVE increases FRP by as much as ss00{ )
2000 MW over the histogram method : r Error s fuly
. - covere )
during the most extreme events 00 prediction?
Observed No
. Net Load 2500 - Yes
+ Reducing exceedance under extreme Forecast ; |
forecast error can be beneficial for system 5™ 5500 TR
reliability 5 S
1500 1 E"’o; ~
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Predicted Net Load Forecast Error (MW)
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@ Retrospective modeling of 2019 using PLEXOS

demonstrates potential cost and GHG savings

2000 Two PLEXOS

S simulations :

S Production $%€Z(D/I/¥eard i

= 2000 : = 0.4% of production

E e AL cost savings _ ..

f o= e GHG 0290l CAISG QNG

& o achine Learnin . — U.£Y0
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.g' 1000 w savings from Sol

s machine olar 225 GWh

X .1500 : . .

> learning curtailment = 19% reduction in

g 2500 reserves? reduction curtailment

< . . .
B 4 6 8 10 12 14 16 18 20 22 Savings are approximately doubled if

Hour of Day flexible solar ramping is included
+ Actual savings may be lower due to ability to procure ramping Savings are reduced significantly under

capacity from outside of CAISO very high battery penetrations

+ CAISO is updating their FRP requirement calculation
methodology, likely capturing some of the benefits shown here
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(&) Next Steps for RESERVE

+ E3is utilizing RESERVE for planning projects with multiple utility clients

 Training utility staff to operate RESERVE to easily generate vectors of operating reserves under
alternative renewable penetrations to inform resource planning and procurement

+ E3is discussing additional applications of RESERVE in day-ahead scheduling and
operations

« Calculate operating day headroom and footroom needs to inform day-ahead unit commitments and
wholesale power trading activities

+ E3is working on additional applications of machine learning techniques to related
problems

* Inform battery state of charge requirements to ensure sufficient reliability services
* Incorporate thermal power plant outage risks

Upcoming publication: Sun, Nelson, Stevens, Au, Venugopal, Gulian, Kasina, O’Neill,
Yuan and Olson, “Machine Learning Derived Dynamic Operating Reserve
Requirements in High-Renewable Power Systems”, Journal of Renewable and
Sustainable Energy (in press) (2022); https://doi.org/10.1063/5.0087144
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Thank You!

Energy and Environmental Economics, Inc. (E3)
44 Montgomery Street, Suite 1500

San Francisco, CA 94104

Tel 415-391-5100

http://www.ethree.com

Arne Olson, Senior Partner (arne@ethree.com)



mailto:arne@ethree.com

