
INNOVATIVE PATHWAYS TO 100% RENEWABLE ENERGY

Douglas C. Smith

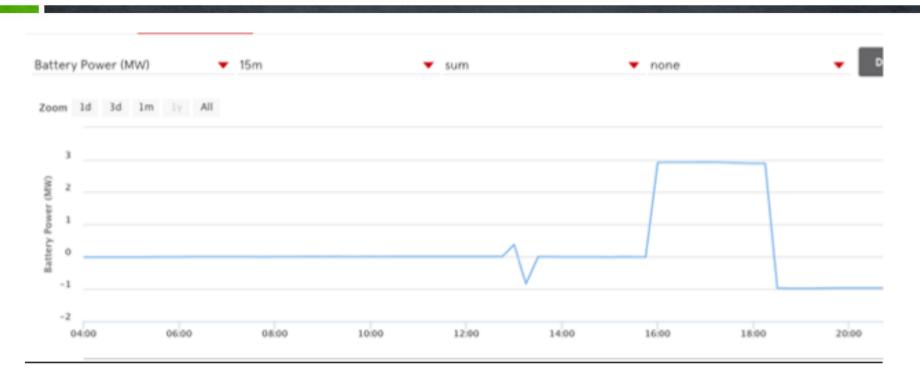
Chief Power Supply Executive Green Mountain Power October 19, 2021

- Over 264,000 Vermont customers in 202 towns
- Regulated electric utility (VT Public Utility Commission)
- Generation, transmission, distribution of electricity
- Purchase most of our power supplies
 - Mostly renewable, some nuclear
- Operate hydro, wind, solar, small peaking plants

- Serving our Vermont electric customers
 - ~700+ MW peak, ~4.3 million MWh/year
 - ISO-NE regional market
- Renewable Energy Standard ("RES")
 - 75% renewable by 2032; New distributed renewables 10% by 2032
 - Transformation (Tier III): displacement of fossil fuels, 10% of sales by 2032
 - Ex: cost-effective electrification (in transportation, heating, process)
- Extraordinary buildout of distributed solar capacity (~50% of peak)
 - Flexible Net Metering; Standard Offer program; some utility projects & bilateral PPAs
- GMP's goal is carbon-free supply by 2025; fully renewable by 2030

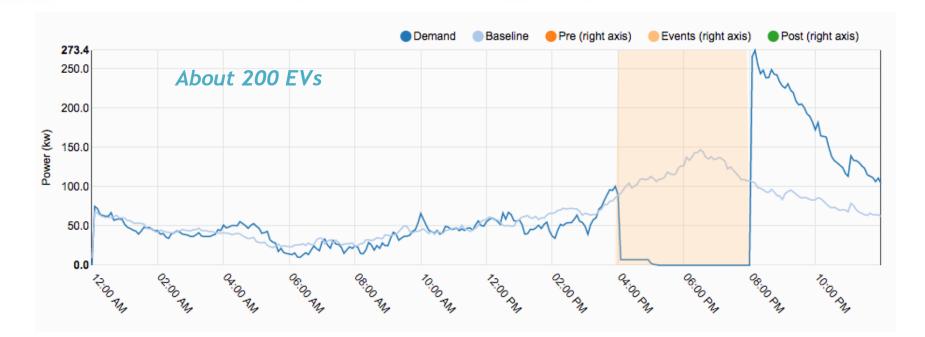
Some of GMP's Customer-Focused DER Tools

Resource	Primary Resource/Activity
Home battery storage	Reliable backup supply for participating customers; GMP uses limited operation for grid/market savings
Controlled EV Charging	Level 2 home chargers
Flexible Load Management Pilot	Building system controls (e.g., HVAC), industrial processes
Curtailable Rider	Ski area snowmaking, up to 40 MW


- Present operation: primarily for peak reduction
- Future: likely more energy arbitrage, grid-focused use cases

Home Battery Storage

- Automated backup power, via two Tesla Powerwalls (total 10 kW, 27 kWh)
- GMP owns equipment; associated costs & lease revenue are reflected in GMP cost of service
 - Margin to benefit GMP's other customers
- First via pilot programs; now a tariff. 16+ MW so far
- GMP may charge/discharge for grid benefits; estimated value is used to reduce the lease price
 - Initial focus on peak shaving
 - New in 2021: participating in ISO-NE's Frequency Regulation market
- Related offerings
 - "BYOD" for customers who buy/lease battery storage via other vendors
 - A portion of units directed to low-income customers


Home Battery Fleet Discharge During a Peak Event

- Tesla dispatches Powerwall fleet (via Gridlogic plaform) to manage Vermont monthly peaks
 We collaborate on ISO annual peaks
- Discharge for this peak event was called from 16:00 to ~18:30, then gradual recharging $_6$

- Key tool to manage cost & grid impacts, as EV load scales up
- GMP offering: free Level 2 charger for customers who buy/lease an EV
- Participating customers must enroll in one of two EV-supportive rates
 - Managed charging: reduced residential energy rate during all hours charging curtailed during limited # of dynamic peak events/month
 - Fixed TOU: lower energy rate, only during defined off-peak hours
- Managed charging: GMP calls events during forecasted peak conditions
 - During events, charger output is reduced/stopped (instruction via internet).
 - Customer may opt out (i.e., charge) during a peak event, at 60 cents/kWh
 - So far, strong performance and few opt-outs

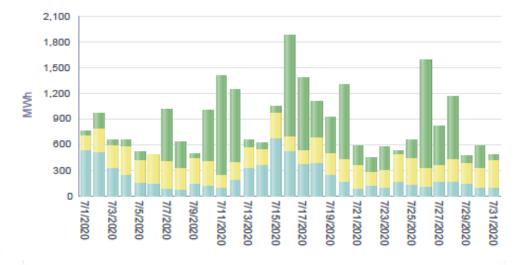
Controlled EV Charging: a Peak Event (March, 2021)

- Peak event was called during the shaded area; participating charging load was reduced to near zero.
- Estimated coincident charging load 100 to 150 kW (less than 15% of max enrolled charging load)
- Note substantial "snapback" jump in demand immediately after the event

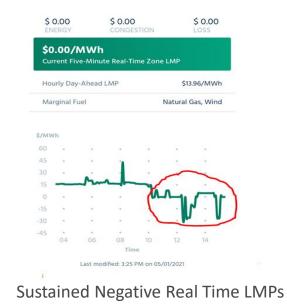
Flexible Load Management "FLM 2.0" Pilot Program

- Shifting loads in commercial buildings and industrial processes
 - HVAC controls, refrigeration, thermal energy storage, process adjustments
 - Goal = automated instruction & response, little impact on customer comfort/operations
 - Build experience & tools to expand this sector
- Strong partners in implementation
 - Efficiency Vermont (customer recruitment, evaluating opportunities, baselining)
 - Dynamic Organics (communication w/building management systems, customer dashboard, advisory, etc.)
- Participating customers paid for load reductions during peak event windows
 - Performance vs. customer-specific baseline consumption levels; 70% of projected savings
- Foundation for future use cases (e.g., energy arbitrage/shifting)

Looking Forward: Supporting The Renewable Transition


Major Renewable Power Sources for GMP Today

- Mostly from plant-contingent, intermittent sources
 - Wind 173 MW
 - Hydro 150 MW (mostly run-of-river)
 - Solar 330 MW
 - Also some shaped/dispatchable renewables (hydro & biomass)
- Characteristic seasonal output profiles, fluctuations


Increasing volumes over time as we build to 100%

Future Use Cases Supporting The Renewable Transition

- Energy shifting in bulk, around core renewable generation sources
- Longer duration tools (e.g., flexible load, storage technologies) needed

Daily output of a fleet of hydro, solar and wind plants

Future Trends and Tools

- Sustained changes in **patterns** of net electric load, power market prices
- And daily/hourly/real time fluctuations based on renewable power output
- Leveraging flexible load and distributed storage to address more use cases
 - Energy arbitrage, alignment of generation and consumption
 - Deferral of grid investments (e.g., renewable hosting capacity), complementing other tools
 - New wholesale grid products/services (e.g., operating reserves)
 - Seeking more value from responding to real time conditions
- Systems and increasing expertise to manage distributed resources
 - Orchestrating multiple distributed resource types together
 - More sophisticated patterns of deployment
 - Improved forecasting and automation