

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Linking Grid Services to Storage and Hydropower Plant Capabilities

Rebecca O'Neil, Water Power Technologies Office (WPTO)

March 20, 2019

- Hydropower and pumped storage as a useful lens
- Linking technology characteristics to grid services
- The motivation and immediate plans for a new research program (HydroWIRES) from US DOE Water Power Technologies Office

U.S. DEPARTMENT OF

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

HydroWIRES Initiative

Value Under Evolving System Conditions

What Will the Grid Require? Output: Drivers, Services, and Value

<u>Capabilities and Constraints</u>

What Can the Hydropower Fleet Do, and Why, in Today's and the Emerging Grid? Output: Technology Characterization

Operations and Planning

How Can We Plan and Operate the Hydropower Fleet to Best Take Advantage of Capabilities? Output: Competitive Position and Contribution to System Attributes

Technology Innovation

What Achievable Innovations are Needed to Enable or Preserve Hydropower's Critical Contribution to the Electric System? Output: New Technology Designs to Create New Capabilities or Remove Barriers

Pumped storage hydropower

NERC Regions

ERCOT: Electric Reliability Council of Texas FRCC: Florida Reliability Coordinating Council MRO: Midwest Reliability Organization NPCC: Northeast Power Coordinating Council RFC: ReliabilityFirst Corporation SERC: SERC Reliability Corporation SPP: Southwest Power Pool WECC: Western Electricity Coordinating Council

Notes: The Alaska Systems Coordinating Council (ASCC) is an Affiliate NERC member. Commercial electric power providers in Hawaii are not affiliated with NERC.

Source: Argonne National Laboratory

Figure 2-41. Existing pumped storage hydropower plants in the United States

Pumped storage hydropower capacity (MW)				
Cumulative (end of 2016)				
CA	3,756			
VA	3,109			
SC	2,581			
MI	1,979			
TN	1,714			
GA	1,635			
PA	1,541			
MA	1,540			
NY	1,240			
MO	600			
CO	509			
NJ	453			
WA	314			
OK	259			
AZ	194			
NC	95			
CT	31			
AR	28			
UT	0.14			
Remainder of United States	0			
TOTAL	21,578			

International development contrast

10

- MENA
- Sub-Saharan Africa

International Energy Agency, March 4 2019.

https://www.iea.org/newsroom/news/2019/march/will-pumped-storage-hydropower-capacity-expand-more-quickly-than-stationary-b.html

Technology	MW Deployed
Sodium sulfur	189
Lithium-ion	1,629
Lead acid	75
Sodium metal halide	19
Flow battery	72
PSH	169,557
CAES	407
Flywheels	931
Electrochemical capacitor	49
Total	172,928

Table 2.1. Worldwide Deployment by Technology Type, 2018

DOE Global Energy Storage Database, <u>https://www.energystorageexchange.org/</u> 2018.

Changing operations to accommodate VRE

AN EXAMPLE OF CHANGES IN PUMPED STORAGE HYDROPOWER OPERATIONS IN MARKETS WITH HIGH PENETRATIONS OF VARIABLE RENEWABLES: THE HELMS PROJECT IN CALIFORNIA

Figure 34. Annual pumping energy consumption by Helms PSH versus CAISO net load in the last week of March (2012-2017)

US DOE Hydropower Market Report 2018. https://www.energy.gov/eere/water/

hydropower-market-report

Comparing storage technologies by attribute

Table 4.3. Summary	y of Compiled Findings b	by Technology Type – BESS ^(a)

	a 11			Sodium	Zinc-	
Parameter	Sodium Sulfur	Li-Ion	Lead Acid	Metal Halide	Hybrid Cathode	Redox Flow
		271 (190)		700 (492)	2(5 (102)	555 (202)
Capital Cost – Energy Capacity (\$/kWh)	661 (465)	2/1 (189)	260 (220)	/00 (482)	265 (192)	<u> </u>
Power Conversion System (\$/kW)	350 (211)	288 (211)	350 (211)	350 (211)	350 (211)	350 (211)
Balance of Plant (\$/kW)	100 (95)	100 (95)	100 (95)	100 (95)	100 (95)	100 (95)
Construction and Commission Cost (\$/kWh)	133 (127)	101 (96)	176 (167)	115 (110)	173 (164)	190 (180)
Total Project Cost (\$/kW)	3,626 (2,674)	1,876 (1,446)	2,194 (1,854)	3,710 (2,674)	2,202 (1,730)	3,430 (2,598)
Total Project Cost (\$/kWh)	907 (669)	469 (362)	549 (464)	928 (669)	551 (433)	858 (650)
O&M Fixed (\$/kW-yr)	10 (8)	10 (8)	10 (8)	10 (8)	10 (8)	10 (8)
O&M Variable Cents/kWh	0.03	0.03	0.03	0.03	0.03	0.03
System Round-Trip Efficiency (RTE)	0.75	0.86	0.72	0.83	0.72	0.675 (0.7)
Annual RTE Degradation Factor	0.34%	0.50%	5.40%	0.35%	1.50%	0.40%
Response Time (limited by PCS)	1 sec	1 sec				
Cycles at 80% Depth of Discharge	4,000	3,500	900	3,500	3,500	10,000
Life (Years)	13.5	10	2.6 (3)	12.5	10	15
MRL	9 (10)	9 (10)	9 (10)	7 (9)	6 (8)	8 (9)
TRL	8 (9)	8 (9)	8 (9)	6 (8)	5 (7)	7 (8)

(a) An E/P ratio of 4 hours was used for battery technologies when calculating total costs.

MRL = manufacturing readiness level; O&M = operations and maintenance; TRL = technology readiness level.

Break down storage into comparable performance attributes:

- Round-trip efficiency (RTE)
- Lifespan
- Number of cycles
- Degradation rate
- Point of interconnection
- Response time
- Energy to Power ratio (E/P)

Energy Storage Technology and Cost Characterization Report, forthcoming from Pacific Northwest National Laboratory, Richland WA.

Comparable storage attributes

Parameter	Pumped Storage Hydropower ^(a)					
Capital Cost – Power (\$/kW)	2,638 ^(b)					
Power Conversion System (\$/kW)	Included in Capital Cost					
Balance of Plant (\$/kW)						
Construction and Commissioning (\$/kW)						
Total Project Cost (\$/kW)		2,640 ^(f)				
Total Project Cost (\$/kWh)		165				
Operations and Maintenance (O&M) Fixed (S/kW-year)		15.9				
O&M Variable Cents/kWh		0.00025				
Round-Trip Efficiency (RTE)		0.8				
Annual RTE Degradation Factor						
Response Time		FS	AS	Ternary		
	Spinning-in-air to					
	full-load	5-70 s	60 s	20-40 s		
	generation					
	Shutdown to full generation	75-120 s	90 s	65-90 s		
	Spinning-in-air to full load	50-80 s	70 s	25-30 s		
	Shutdown to full load	160-360 s	230 s	80-85 s		
	Full load to full generation	90-220 s	280 s	25-60 s		
	Full generation to	240-500 s	470 s	25-45 s ^(g)		

Parameter	Pumped Storage Hydropower ^(a)
Cycles at 80% Depth of Discharge	15,000
Life (Years)	>25
Manufacturing Readiness Level	9 (10)
Technology Readiness Level	8 (9)

Attributes are not equivalent to selection and do not provide the complete context:

- Scale
- Costs vs. risk
- Speed of response or duration of response
- Commissioning timeframe

The challenge of valuing large pumped storage assets

Valuation Challenges

Act as either a generator or load

Current state is influenced by all previous states

Operational limitations and behaviors are not captured with single value specifications (nameplate capacity, energy)

Long-lived asset (40 years) requiring extended-term forecasted value

Long timeline from decision to commissioning (new projects)

Competition of limited energy for services, intertemporal competition

Scale influences prices

Ideal Model Integration Features for Pumped Storage Valuation

Estimation of system effects due to the operation of the PSH unit

Performance characterization (non-linearity, "SOC," economic plant life)

Account for forecast uncertainties

Mathematical optimization considering all possible services simultaneously

Pumped Storage Hydropower Valuation Guidebook, forthcoming technical report from Argonne National Laboratory, Lemont IL.

Valuation Methodologies Developed to Account for Grid Services
Capacity
Energy Arbitrage
Ancillary Services
Black Start
Power System Stability
System-Wide Effects
Transmission Services (Congestion Relief, Deferral)
Relevant Modeling Tools Required for Co- Optimization, Compared

Energy Storage Valuation

Production Cost and Capacity Expansion

Hydropower Simulation and Water Allocation

Transmission System Planning

Agent-Based Electricity Market Simulation

Storage within transmission planning

Transmission Planning Region	Planning Region Type	Regional Transmission Planning Cycle	Solution Procurement Type
California ISO (CAISO)	ISO/RTO	15 months	Competitive bidding
Columbia Grid	Non-ISO/RTO	Two years	Sponsorship
Florida Reliability Coordinating Council (FRCC)	Non-ISO/RTO	Two years	Sponsorship
ISO New England (ISO-NE)	ISO/RTO	Not defined	Sponsorship
Midcontinent ISO (MISO)	ISO/RTO	18 months	Competitive bidding
New York ISO (NYISO)	ISO/RTO	Two years	Sponsorship
Northern Tier Transmission Group (NTTG)	Non-ISO/RTO	Two years	Sponsorship
PJM (PJM)	ISO/RTO	Two years	Sponsorship
South Carolina Regional Transmission Planning (SCRTP)	Non-ISO/RTO	Two years	Sponsorship
Southeastern Regional Transmission Planning (SERTP)	Non-ISO/RTO	One year	Sponsorship
Southwest Power Pool (SPP)	ISO/RTO	Three year	Competitive bidding
WestConnect	Non-ISO/RTO	Two year	Competitive bidding

Recommendations for future work:

- Cost-effectiveness analysis for ATS (alternative transmission solution) considering unique characteristics
- Market participation models for "dual use" (market + transmission)
- Storage optimization and costrecovery mechanisms

Role of Large-Scale Energy Storage in Transmission Planning, forthcoming report from Argonne National Laboratory, Lemont IL.

Technology characteristics to grid services

	Hydro (conventional; large units)	Hydro (pumped storage)	Combustion turbine	Combined cycle	Coal or other fossil fuel (thermal)	
Go/no-go requirements						
Able to start without an outside electrical supply (fundamental requirement)	Yes (if so equipped).	Yes (if so equipped)	Yes (if so equipped)	Yes (if so equipped)	Yes (if so equipped)	
Sufficient real power capability	Yes (if so equipped)	Yes (if so equipped)	Yes (if so equipped)	Yes (if so equipped)	Yes (if so equipped)	
Sufficient reactive power capability	Yes (if so equipped)	Yes (if so equipped)	Yes (if so equipped)	Yes (if so equipped)	Yes (if so equipped)	
Required attributes						
Short starting time (less is better)	Sub-hour	Sub-hour	Sub-hour	Hours	Many hours	
Number of units at black start facility	Many units typical at larger plants	Usually several units	Usually several units	Usually several units	Often more than one unit	
On-site fuel inventory of black start fuel	Ample fuel (water) nearly always available unless impacted by drought conditions	Fuel (water) would need to be held in reserve for black start purposes	Fuel available if pipeline remains in service and pressurized	Fuel available if pipeline remains in service and pressurized	Fuel (local coal pile) nearly always available but must be pulverized	
Complexity of necessary auxiliary systems (e.g., fuel supply, cooling, emission controls)	Very simple	Very simple	Simple	Somewhat complex thermal systems	Very large and complex thermal systems	

Hydropower Plants as Black Start Resources, forthcoming technical report from Oak Ridge National Laboratory, Oak Ridge TN.

Hydropower utilization as a ramping resource today

Hydropower's ability to quickly adjust output up or down to follow changes in net load plays a key role in complement to the much larger, and also highly flexible, natural gas fleet.

US DOE Hydropower Market Report 2018. https://www.energy.gov/eere/water/hydro power-market-report

Figure 4. Average and 10th-90th percentile interval for one-hour ramps (both positive and negative) per installed megawatt for hydropower and pumped storage hydropower vs. natural gas by ISO/RTO

Range of hourly to seasonal flexibility from hydropower

Illustration of hydropower flexibility over multiple temporal scales provided by varying generation over hours, days, months and seasons to meet market opportunities and local demands, managed in concert with water availability.

Hydropower Value – Chelan PUD Case Study. Forthcoming publication from Pacific Northwest National Laboratory in collaboration with Chelan County Public Utility District #1, Wenatchee, WA.

Hydropower: marrying water and energy management

Understand the current state of representation of hydropower in power system models, including challenges of effective characterization of hydropower assets and seams between electricity dispatch and water management models.

Improving hydropower representation in power system models. Forthcoming workshop report from National Renewable Energy Laboratory and Pacific Northwest National Laboratory.

The role of research : anticipated near-term DOE actions

- New tools and modeling enhancements
 - Pumped storage valuation software tool
 - Improved characterization of hydropower, or precise sense of the limitations (spatial, temporal, units, computational complexity)
 - Modeling enhancements for pumped storage
- Data development
 - Quantification of hydropower fleet operational flexibility, potential and available
 - Plant and fleet-level conditions and capabilities
- Improving hydropower's competitive position
 - Advanced plant capabilities
 - Development timeframe reduction

Please help us! Respond to a Request for Information (to issue in April) and provide feedback on the HydroWIRES research roadmap.

Thank you

Rebecca O'Neil US Department of Energy Water Power Technologies Office <u>Rebecca.ONeil@ee.doe.gov</u> <u>Rebecca.ONeil@pnnl.gov</u>

water.energy.gov

BACKUP SLIDES

Grid Flexibility, Reliability and Resilience for Hydropower

We support research to evaluate and improve the ability of hydropower to provide essential flexibility and reliability services for the rapidly evolving electric grid

- Understand baseline conditions of hydropower and pumped storage contribution to grid reliability and resiliency
- Assess the costs and opportunities of operating hydropower flexibly
- Improve capabilities to evaluate future grid system conditions and services that hydropower and pumped storage are well suited to provide
- Preserve and enable competitive hydropower flexibility
- Support development of innovative hydropower and pumped storage technologies

Pumped Storage Hydropower

- Pumped-storage hydropower (PSH) is a water battery:
 - Two water reservoirs are configured at different elevations that can generate power (discharge) as water moves down through a turbine; and that draws power as it pumps water (recharge) to the upper reservoir.
- Projects may be:

Open loop – There is an ongoing hydrologic connection to a natural body of water

Closed loop – Reservoirs are not connected to an outside body of water

- Pumped storage hydropower characteristics:
 - > 97% of domestic energy storage (22 GW)
 - Large (>100 MW), long duration
 - Historically built for daily swings in load and as a companion

to large thermo-electric generators

Flexible resource that supports reliability objectives

Source: Koritarov et al. 2014 [234]

Figure 2-42. Typical configuration of a pumped storage hydropower plant

Operating Ranges and Alternate Configurations

Pumped storage round-trip or

Source: Koritarov et al. 2013b [237]

Figure 2-45. Typical configuration of a ternary pumped storage hydropower with hydraulic bypass

Source: Koritarov et al. 2014 [83], adapted from Corps 2009 [235]

Figure 2-43. Generation efficiency curves for fixed-speed (blue) and adjustable-speed (green) pumped storage hydropower units

Typical Operating Characteristics of Alternate Configurations

Capability	Fixed-Speed PSH	DFIM Adjustable-Speed PSH	Ternary PSH with Hydraulic Bypass and Pelton Turbine	Capability	Fixed-Speed PSH	DFIM Adjustable-Speed PSH	Ternary PSH with Hydraulic Bypass and Pelton Turbine
Generation Mode:				Pumping Mode:		·	
Power output (% of rated capacity)	30%ª-100%	20%-100%	0%-100%	Power consumption (% of rated	100%	60%-100%	0%-100%
Standstill to generating mode	75.00		65	capacity)		(75%-125%)*	
(seconds)	75-90	/5-85	05	Standstill to pumping mode	160-340	160-230	80
Generating to pumping mode				(seconds)	100 540	100 200	00
(seconds)	240-420	240-415	25	Pumping to generating mode	90-190	90-190	25
Frequency regulation	Yes	Yes	Yes	(seconds)	50 150	50 150	20
requercy regulation	105	105	105	Frequency regulation	No	Yes	Yes
Spinning reserve	Yes	Yes	Yes				
Ramping/load following	Yes	Yes	Yes	Spinning reserve	No	Yes	Yes
namping, lead teleting				Ramping/load following	No	Yes	Yes
Reactive power/voltage support	Yes	Yes	Yes				
Generator dropping	Yes	Yes	Yes	Reactive power/voltage support	Yes	Yes	Yes
				Load shedding	Yes	Yes	Yes

a. One of the key factors determining the minimum power output is the hydraulic head. While fixed-speed PSH with high head can have the minimum as low as 20% of rated capacity, 40% is a more realistic value for medium to lower head PSH units.

b. If a PSH unit is converted from fixed- to adjustable-speed and the same pump-turbine runner is used, the power consumption may range from 75% to 125% of the former fixed-speed power consumption (100%).

Source: Koritarov et al. 2015 [238]

Development curve

Note: This figure displays the initial year of operation for each project except in two cases (Hiwassee and Grand Coulee) in which no pumped storage units were installed when they first became operational. In those two cases, the capacity was assigned to the decade in which the pumped storage units were added.

Source: NHAAP

Figure 18. Pumped storage hydropower installation timeline by plant size

New Funding Opportunity for Pumped Storage

DE-FOA-0001836: Innovative Design Concepts for Standard Modular Hydropower and Pumped-Storage Hydropower

In August 2018, WPTO released a new funding solicitation for pumped storage hydropower on two topics:

- Innovative design concepts that can reduce costs of deployment, expand siting access, speed the time to commissioning, and provide additional nonelectric value streams
- Analysis and modeling enhancements that illustrate how pumped storage can improve electricity system resilience, reliability, and economic efficiency

Concept paper deadline: September 28, 2018

https://www.energy.gov/eere/water/articles/funding-available-innovative-designconcepts-standard-modular-hydropower-and