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Outline

A Word of Caution: GFM IBRs Complex Dynamics
* Faster controls can speed up the transition to chaos

 Decentralized Stability Analysis in Power Grids
* Generalizing control tools for network systems

* Avenues for Future Research
* Early detection via critical slow-down
* Novel IBR control designs: Trading Freq. vs Volt. Support
* The role of operations in SSO prevention



Nonlinear Phenomena in IBR-rich Grids

Sustained oscillatory behavior is intrinsically nonlinear phenomena induced by bifurcations
which often can leads to chaos

limit cycle limit torus chaotic attractor

Prior art (198911 - 2004!2]) focus on nonlinear phenomena induced by synchronous machines.

Three well-known routes to chaos!3!:
* Period-doubling route: doubling of subsequent periodicities.

* Ruelle-Takens-Newhouse quasi-periodicity route: quasi-periodic torus attractors.
* Maneville-Pomeau intermittency route: sudden bursts to chaos.

[1] I Dobson, H.-D. Chiang, Towards a theory of voltage collapse in electric power systems. Systems & Control Letters 1989

[2] J. Hongjie et al, Three routes to chaos in power systems. Canadian Conference on Electrical and Computer Engineering 2004
[3] Abraham, Arimondo, and Boyd, Instabilities, dynamics and chaossmiqemndiseanoptical systems.



Nonlinear Phenomena in IBR-rich Grids

Q1: Can IBR-rich power grids induce chaotic behavior?
Q2: Is there a fundamental difference between GFL and GFL Inverters?

Grid Following Inverter Grid Forming Inverter
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I P =t | HT
Q T T’«’t
VS |
1117 . 1
;@ZM{ Current ::ommner i ) @Iﬁ Curment
Problem Setup: Analysis Tool:
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* IBR connected to infinite bus
* Use current controller gain K,, as bifurcation parameter m maps
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GFL Inverter
Case 1: Normal Operation (Kp = 1.5) = Fixed Point

Limit cycle plot
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Bifurcation parameter is chosen as the proportional gain K, of the current

controller.
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GFL Inverter

Case 2: (Kp = 3.0) =

Inverter Terminal Voltage
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Bifurcation parameter is chosen as the proportional gain K, of the current

controller.
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Volts

GFL Inverter

Case 3: (K, = 5) = Period-2 Orbit (T=0.215s)

Inverter Terminal Voltage Limit cy‘cle plot
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Bifurcation parameter is chosen as the proportional gain K, of the current
controller.
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Volts
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GFL Inverter

Case 4: (Kp = 5.5) = Period-4 Orbit (T=0.425s)

Inverter Terminal Voltage
T T T

Limit cycle plot
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Bifurcation parameter is chosen as the proportional gain K, of the current

controller.
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Volts

GFL Inverter

Case b5: (Kp = 5.7) = Chaos

Inverter Terminal Voltage
T
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Bifurcation parameter is chosen as the proportional gain K, of the current

controller.
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Nonlinear Phenomena in IBR-rich Grids

1. Can IBR-rich power grids induce chaotic behavior?
2. Is there a fundamental difference between GFL and GFL Inverters?

Grid Following Inverter Grid Forming Inverter

vsc

VS

Observations:
> Grid-following (GFL) inverter = Period-doubling route

Enrique Mallada (JHU)



GFM Inverter

Case 1: Normal Operation (Kp = 2.5) = Fixed Point

Volts
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Bifurcation parameter is chosen as the proportional gain K, of the current

controller.
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GFM Inverter

Case 2: (K, = 0.636998540037319) = Period-1 Orbit

Bifurcation parameter is chosen as the proportional gain K, of the current

controller.

Enrique Mallada (JHU)
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GFM Inverter
Case 3: (K, = 0.636998540037318) = Chaos

Limit Cycle
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Bifurcation parameter is chosen as the proportional gain K, of the current
controller.
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Nonlinear Phenomena in IBR-rich Grids

1. Can IBR-rich power grids induce chaotic behavior?
2. Is there a fundamental difference between GFL and GFL Inverters?

Grid Following Inverter Grid Forming Inverter

vsc

VS

Observations:
> Grid-following (GFL) inverter = Period-doubling route
> Grid-forming (GFM) inverter = Intermittency route

Observations: GFM inverters can produce even more complex behavior

Enrique Mallada (JHU)



Outline

A Word of Caution: GFM IBRs Complex Dynamics
* Faster controls can speed up the transition to chaos

 Decentralized Stability Analysis in Power Grids
* Generalizing control tools for network systems

* Avenues for Future Research
* Early detection via critical slow-down
* Novel IBR control designs: Trading Freq. vs Volt. Support
* The role of operations in SSO prevention



Decentralized Stability Analysis in Power Grids [TCNS 19]

D1 AP]_—»O—» 4l — W1 '
AP = w1 - Richard Pates
: 5 C) E i o 1.When does this
) ; ' interconnection is stable? 1.l
AP,| _ 4 . W, s
Pn
(]
(]
([ J
1
s L
2. Can we analysis and control design
based on local rules? :
sn[°

Problem Setup:
* Linearized power flows, lossless
Lij = bijvinCOS(H; — 9]*)

 Busi: arbitrary siso transfer function:
w; = p;(s) AP; (SGs or IBRs)

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019
Enrique Mallada (JHU)



Decentralized Stability Analysis in Power Grids [TCNS 19]

§

p1 AP o p1 > W1
T |:w1:| : Richard Pates

AP

1.When does this

Pi >

. W, interconnection is’gtab/e? %,71 -
Pn

Can we use network information to relax

passivity conditions?

L |  E—

AP,

Im(z)

Standard Approach: Passivity
Positive Real (PR) TF

* If p;(s) is strictly positive real (SPR), then the Re[p;(s)] = 0

interconnection is stable for all networks L! )
%
Strictly Positive Real TF
Re[pi(s —€)] =0

_

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019
Enrique Mallada (JHU) 4



Classical Result: Absolute Stability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Frequency Domain Stability Criteria—Part I

R. W. BROCKETT, MEMBER, IEEE AND J. L. WILLEMS

Abstract—The objective of this paper is to illustrate the limita- II. Tueg GENERALIZED Porov THEOREM

Nyquist Diagram

gain plant 15
O K o G6) G(jw) |
2 0-5¢ i
Stablefor0 < K < k™? <
2 0 i
Assume: G (s) is stable =
—0.5} .
Define: h(s) € PR (passive) B |
Test: If h(s)(l + k*G(s)) € SPR (strictly passive) . | ‘ | |
then yes| 45 -1 -05 . |2\' 0.5 1 15

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019
Enrique Mallada (JHU)



Classical Result: Absolute Stability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Frequency Domain Stability Criteria—Part I

R. W. BROCKETT, MEMBER, IEEE AND J. L. WILLEMS

Abstract—The objective of this paper is to illustrate the limita- II. Tueg GENERALIZED Porov THEOREM

: Nyquist Diagram
gain plant

1.5 T T
r T e u ¥ ]
: K { G(s) . L (E+6Gw)
PR
Stable for0 < K < k*? <
£ 0 J
Assume: G (s) is stable = o
Define: h(s) € PR (passive) B
Test: If h(s)(l + k*G(s)) € SPR (strictly passive) . | | | | |
15 -1 -0.5 0 0.5 1 1.5
then, yes! Real Axis

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019
Enrique Mallada (JHU) 5



Classical Result: Absolute Stability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL

Frequency Domain Stability Criteria—Part I

R. W. BROCKETT, MEMBER, IEEE AND J. L. WILLEMS

Abstract-—The objective of this paper is to illustrate the limita- II. Tue GENERALIZED Porov THEOREM
gain plant Nyquist Diagram
T 1.5 : : ?
s e ' _} :
- K  G(s) > h(jw)(1 + k*G(jw))
1r :
@ 0.5
Stable for 0 < K < k*? <
£ o0 + |
Assume: G (s) is stable =
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Define: h(s) € PR (passive) 1
Test: If h(s)(l + k*G(s)) € SPR (strictly passive) . | | i | |
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[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019
Enrique Mallada (JHU) 5



Scale-free Stability Analysis

Key Idea: Exploit limited network information to relax passivity condition

* Let y; be a local connectivity bound:[L]; = Y ey, bijvivjcos(8; — 6;) < %
Brockett & Willems ‘65 Pates & Mallada 2019
Assume: G(s) is stable Assume: p;(s) is stable
Define: h(s) € PR (passive) Define: h(s) € PR (passive)
Test: If h(s)(1+ k*G(s)) € SPR (strictly) Test: If h(s) gl + Yi%Pi(S) € SPR, Vi, then
then system is stable forall 0 < K < k* system stable for networks [L'];; < %,Vi

P

gain plant AR 5 i
. : Di :

s e i .} B - Wy

w

v

Hf* K G(s) . b |$ AP;—e— s

1
st

[TCNS 19] Pates, M. Robust Scale Free Synthesis for Frequency Regulation in Power Systems. IEEE Transactions on Control of Network Systems, 2019
Enrique Mallada (JHU)



Decentralized Stability Analysis for IBR Power Systems

w({[a}.)
w({[i]]..),

Bus dynamics I'1(s5)

Bus dynamics: Droop-based grid-forming IBR (MIMO)

"t
v

Ng
\

=({{&]}_)

é?; = Wj
w; = w,? + mfff(s)(PP — PT,), Vi € Vino-
vi =V +mifi(s)(QF — Q).

Bus dynamics: Synchronous machine (SISO)

1 ”
5 Lg(s) ¢

Network

Theorem:
If for all i € V;,,, the loop gain mlq satisfy

OSmqu

2(Vmax,j = Vmin,i) bl
for all j € WV;, then the system is stable

1

Remarks:
Fully decentralized (plug-and-play)

Robust to network operating points
* Based on input-output models
e Several assumptions...

[PESGM 24] Siahaan, M, Geng, Decentralized Stability Criteria for Grid-Forming Control in Inverter-Based Power Systems. PES General Meeting 2024

Enrique Mallada (JHU) 7



Outline

A Word of Caution: GFM IBRs Complex Dynamics
* Faster controls can speed up the transition to chaos

e Scale-free Small-signal Stability Analysis
* Generalizing control tools for network systems

* Avenues for Future Research
* Early detection via critical slow-down
* Novel IBR control designs: Trading Freq. vs Volt. Support
* The role of operations in SSO prevention



Early Detection via Critical Slowdown NONLINEAR

. . - C . e DY NAMICS
Transition to instability via bifurcations has the specific signature
of critical slowing down AND CHAOS
Early disease detection“] Loss of resiliencel?! 4

b pP=0.4 (Normal)
Zowi |- ij} A High resilience B Low resilience
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Research Questions:
* |s critical slow-down a measurable feature in SSO transition to instability?

* Can we use critical slow down signatures to develop early alarm notifications?
* What is the role of ML/AIl in identifying these signatures?

[1] L. Chen et al. Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers, Scientific reports 2012
[2] M. Scheffer et al. Anticipating critical transitions, Science 2012
Enrique Mallada (JHU) 7



Novel control designs for exploring trade-offs

IBR control flexibility enable control behavior not possible before: Grid Shaping

w Aa)
+ : A
-, w fw
Vu :

wref Turbine l_,’_ =
"
Pref|—§ w’ref |_' @
P
P, Prey ’
P, Remove Nadir or Tuning RoCoF
Challenge: 0
o o . o m
* SSO limits inverter ability to shape frequency response 2 100l
- _
Research Questions: g7 o storogs
* Can we design controllers that trade-off between stability 2 _ | " e
> 1DJroop: a=m
and performance? - 5 a— RAP/02
e Can we dynamically tune controllers based on grid §-400o : -
conditions? =

Time t (s)

[LCSS 20] Jiang, Bernstein, Vorobev, M. Grid-forming frequency shaping control for low-inertia power systems IEEE Control Systems Letters 2020
[LCSS 23] Poolla, Lin, Bernstein, M, Grol3. Frequency shaping control for weakly-coupled grid-forming IBRs IEEE Control Systems Letters 2023
Enrique Mallada (JHU) 7



The role of Operations in SSO prevention

Emergence of oscillations depends on grid conditions and control tunning

e

Power Flow Constraint

pl'-. i * * Vi
| H z bijvivjcos(6; — 0;) < 31

W,

L
. . 8. <
. 1
Vil

IBR Dynamics Constraint

AP

AP,

h(S) <1 + Yl%pl(s)> € SPR

Research Questions: -

* Can we design dispatch mechanisms that can prevent SSO?

* Can dispatch mechanisms also inform about control tuning?

* How should we implement such mechanisms with inaccurate models?

Enrique Mallada (JHU)



Summary

A Word of Caution: GFM IBRs Complex Dynamics
* Faster controls can speed up the transition to chaos

e Scale-free Small-signal Stability Analysis
* Generalizing control tools for network systems

* Avenues for Future Research
* Early detection via critical slow-down
* Novel IBR control designs: Trading Freq. vs Volt. Support
* The role of operations in SSO prevention



Thanks!

mallada@jhu.edu * Enrique Mallada * http://mallada.ece.jhu.edu
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