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Outline

• Introduction

• Distributed Load Control (aka “Demand 

Dispatch”)  What is it?

• How does it work? 

• How does it perform?

• How do the costs compare to Battery 

Storage?



Introduction

• While the purpose in the past was different, today battery systems 

are being installed to counter the volatility of renewables



Introduction
• But, battery costs are significant:

▪ Cells need replacing every 5-10 years

▪ Energy loss ~10% per cycle

▪ A/C is required to cool battery cells

▪ Grid-scale systems require lots of real 

estate

• One alternative: Demand Dispatch – a set 

of load adjustment techniques that go far 

beyond traditional demand response to 

provide battery-like services

• We compare the cost of the largest Li-ion battery system in the US with an equivalent 

amount of demand dispatch.

❖ 30 MW, 120 MWh installation by SDG&E



• A common signal is broadcast to each class 

of loads where local control considers the 

command signal and its own state to compute 

the probability of changing the power mode.

• Randomization eliminates synchronization 

and enables local control

• Reduces computation/communication

• Guarantees Quality of Service (QoS) 

• Aggregate behavior can be described as a 

virtual battery

• What is the capacity of a “virtual battery”?

Distributed Control Architecture



• The generalized battery model from [4] is 

used to estimate the capacity for water 

heaters to provide grid services.

Energy Capacity C = N∆Cth / 2

Discharge power limit n+ = NPo

Charge power limit n- = N(Pm - Po )

• Parameters for typical electric water heaters 

are taken from [4-6]

Deadband ∆ = 2-10 °C

Thermal Capacitance Cth = 0.2 – 0.6 kWh/°C

Max Power Pm = 4-5 kW

Average power Po = 0.2 – 0.3 kW

• Using the generalized battery model and the given parameters, we calculate that N = 

120,000 water heaters are needed to provide 30 MW, 120 MWh of capacity

Calculating Capacity



Validating Capacity Estimates
• Power deviation of the collection 

can track a reference signal

• 120,000 water heaters tracking a 

30 MW, 120 MWh sinusoidal 

signal

• Tracking is nearly perfect 

when the capacity limits of the 

collection are respected



Validating Capacity Estimates
• Power deviation of the collection 

can track a reference signal

• 120,000 water heaters tracking a 

30 MW signal for four hours

• Tracking is nearly perfect 

when the capacity limits of the 

collection are respected



Validating Capacity Estimates
• Power deviation of the collection 

can track a reference signal

• 120,000 water heaters tracking a 

scaled version of a real-world 

grid regulation signal, Bonneville 

Power Administration’s (BPA) 

Balancing Reserves Deployed 

(BRD)

• Tracking is nearly perfect 

when the capacity limits of the 

collection are respected



Validating Capacity Estimates
• This reference signal exceeds 

the ‘discharge’ power limit of the 

collection

• Tracking fails at or near the 

boundary because nearly all the 

water heaters have already 

turned off

• Tracking fails when the 

capacity limits are violated



Validating Capacity Estimates
• This reference signal exceeds 

the energy limit of the collection

• Tracking fails near the energy 

limit because local control is 

working as intended, i.e., QoS is 

guaranteed for each water 

heater

• Tracking fails when the 

capacity limits are violated



Net Present Value Analysis
• The NPV of a 30 MW, 120 MWh battery is estimated using data from Lazard [7] and NREL [8], 

including:

• Capital costs for battery modules and interconnection equipment

• Recurring costs for O&M, cycling losses, cell replacement

Scenario

Time Horizon Best Expected Worst

10 years $149 M $232 M $329 M

20 years $241 M $398 M $493 M



Net Present Value Analysis

• The NPV of equipping 120,000 water heaters for demand 

dispatch was estimated using data from [6] and [9], including:

• Capital costs for hardware installation

• Recurring costs for customer payments, accessing 

communication networks



Net Present Value Analysis
10-year NPV



Net Present Value Analysis
20-year NPV

If monthly costs are below $10, it may be cheaper to give away
120,000 ‘smart’ water heaters!



Summary/Conclusion

• Demand Dispatch is not “load shedding” for contingencies, though it can 

support them.

• It is not “load shedding” for pure economics, though it can be.

• It does not violate Quality of Service (QoS).

• It can closely match the performance of a Battery System, but at 

significantly less cost.

• It allows loads to be responsive to market conditions—something that has 

been elusive in the organized markets.  (“Prices to devices”)

• Clearly, batteries will play an important role in the smart grid of the future, 

however, utilities should first consider retro-fitting flexible loads to create 

virtual energy storage resources



Reinventing Control and Economics in the 
Power Grid
Six-hour short course within the EDF 
Workshop:  Thematic Semester on Statistics for 
Energy Markets Modelling, Forecasting for 
Renewable Energy Production and Statistical 
Inference
http://www.thematicsemester.com/

New project with EDF – Open Access TCL 
simulator for testing VES algorithms (stay 
tuned)

http://www.thematicsemester.com/
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