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Oscillations, a subgroup of dynamics
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Analytical
Modeling of
High-Power

Converters

By Dragan Jovcic® and Lingling Fan ¢

POWER TRANSMISSION SYSTEMS HAVE BEEN BASED
on ac technology since the first meshed regional systems
demonstrated cost-effectiveness during the “War of the Cur-
rents” at the turn of 20th century. They are an adequate and
inexpensive solution for interconnecting large power genera-
tors with load centers while also providing good power trans-
fer security at acceptable losses. AC grids have been bult in
all countries worldwide at various voltage levels, and their
design, modeling, and control principles are well-known.
The primary limitations of traditional el hani

cal ac systems are reactive power circulation, the inability to
control power flow, and lack of frequency control. With the
devel of power at high powers in the
1980s and 1990s, power converters were developed at mega-

systems; additionally, the converters also help with the bet-
ter utilization of assets (deferral of upgrades), resolving some
power quality issues and improving system security. There
are many FACTS converters, but the most common include
the static var 1p (SVO), thyri lled series

p and static The transition toward
renewable power generation in the last 20 years has brought
new types of dispersed generators that are either dc or use
variable frequency and, therefore, require power converters.
All modern wind generators utilize converters that facilitate
turbine variable-speed operation at low stresses and good

The conventional analysis approach:

analytical model building, and
linear analysis.

Analytical model
building
(linearization)

EMT model
building

eigenvalue
analysis

nonlinear
simulation
validation

efficiency. Photovoltaic plants and all energy storage (
ies, supercapacitors, and fuel cells) utilize dc and nece

interfacing ac/dc converters. Currently, power convert
bi in power issi ibution systems

watt power levels that helped resolve all these li
High-power converters were initially employed with high-
voltage (HV) dc transmission that facilitates 1labl

These large converters have brought new challeng
system modeling, design, control, and

power flow in a transmission line without any reactive cur-
rent and with low loses, particularly for long lines and cables.
The family of converters belonging to flexible ac transmis-
sion systems (FACTS) was also developed quite early, which

sis. Traditional ac power systems have slow dynamit

are dominated by inertia time constants of large gene

Subsystem
dynamic
equations

>

Averaging Discretization

with control achieved using mechanical means like m

Accuracy
Verification

governors and exciters. Converters have signifi
dy i i two orders of magnitude faster) and

has facilitated improved power flow in ac
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numerous control loops, and they will always operate on
some dc variables (voltage and current) in addition to ac
transmission system variables.
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Type-4 wind generator
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Conventional mechanism analysis: analytical modeling, eigenvalues, sensitivity analysis

id dq frame
a6 2o & _
- - _ 1,
1 s A7, 1 [aa° T, 7, >
o dqd PLL — Ir_" dqd L[> VPCC Transmission
) q network
Shunt
» . iAG 7 . capcitor Vpce
F De _ PCC T w
—» » , —» z
DC-link |, GSC | Ve [dg™ — —( )
Pi:- capacitor I 3] control ] dq® —L» GSC filter —p 4-
Vi v, ) 47
e T L
T rsc |7 [ag™ __: DFIG |7 v | e
O control [ I g | ) G _,If Af_
PLL frame 7 — dq —"‘TM P,
Tao
there is only a 60-Hz mode.
v H H T T r . . .
With series comp Eigenvalue analysis is
powerful. Yet just
_ Mode 2 | eigenvalue analysis
N
IE: ® x;c—;(::omm cannot eXp|aIn
g O wmm >x 1 mechanism, e.g.:
= . '
4 — |  why the diff ?
E O 10% series comp why the dirrerence:
-50 f 75% series comp
SRERTRRRRRRRRRIOIOOOOOOINXNHY
: .
-100 : - |
-80 -60 -40 -20 0 20

Real (1/s)



Simplification & frequency-domain analysis:

. With rotor resistance incr m com
Static frame: 42 Hz otor resistance eased, sub mode becomes

18 Hz / worse, sup mode becomes better.
Bode Diagram /
40 \ ——— - 102 Hz
g, | /\. I | 700 . T v
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Ref: L. Fan, C. Zhu, Z. Miao and M. Hu, "Modal Analysis of a
DFIG-Based Wind Farm Interfaced With a Series

If the RLC circuit is powered by a voltage source, Compensated Network,” TEC 2011

we expect to see.sub- and super-sync modes in The detailed analytical model-based eigenvalue analysis
the dq frame, or in power. results confirm the existence of sub- and super-sync modes.
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Simplification & frequency-domain analysis:

Z in the dg frame has a peak at 60
Hz. This implicates a 60-Hz mode as a
7| pole.

Z_i

Bode Diagram

60 Hz

n
o

o

This explains why in the type-3 wind
farm, the LC mode is dominant;

Magnitude (dB)
n
o

NG

-40
TV wl | o | | while |.n the type-4 wind, the LC
- 180F - - S ; mode is not a pole.
g% 7” // In the subsynchronous frequency
In the static frame- g rzfmge, a type-3 wind farm shou.Id be
J viewed as a voltage source; while a
Z= R+sL+ & S ' m— e type-4 wind farm may be viewed as
Frequency (Hz) a current source.
In the dq frame: If the RLC circuit is powered by a current source,
7 =R+ (s+jo)L+ m we expect to see a 60-Hz mode in the dq frame,
or in power.
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RCA analysis via simplified feedback systems

» Simplification and frequency-domain analysis directly lead us to

mechanism. Therefore, RCA may focus on constructing feedback
systems consisting of blocks.

* Methodology:

* Speculate the cause by examining measurement data and construct relevant
feedback systems

 Example 1: For voltage oscillations: volt-var loop
 Example 2: For PLL related dynamics: synchronization loop (angle to angle)
 Example 3: For SSTI: synchronization loop (power to angle)
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Example 1: Oscillations in voltage and reactive power
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When the real power ramps to a certain level, voltage and
reactive power show 0.1-Hz oscillations.

* Major feedback: voltage-reactive power
* Fine tuning: real power also has influences.
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Bode Diagram
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Case 1: 0.1-Hz oscillations
Case 2: 4-Hz oscillations

Oscillation frequency is
dependent on the
communication delay.

High power,

large voltage control gain,
weak grid strength,

large communication delay
may lead to oscillations.



Example 2: Series/shunt compensation makes PLL-induced
oscillations worse

Type-3 wind with radial connection to a series capacitor is known to
cause SSO. For IBRs with grid-connected converters,

* Will series compensation cause SSO for type-4 wind?
e Will shunt compensation cause SSO for solar PV and type-4 wind?

* Why shunt compensation makes IBRs lose stability?

* If there is no shunt cap, an IBR can operate in a weak grid. With shunt, it can
no longer operate in such a grid.
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Path 1 + Path 2
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Example 3: Subsynchronous Torsional
Interaction (SSTI)

Mechanics of Interaction With Series Capacitors

Feedback Loop: St Vor 5¢ AC Line
Windin A~ — { ( |.,V—YV\_
AO) = AV L _'_., Series
Excites ‘?y Capacitor
Electrical c
Gl Generator
/Daesol e BOBCE G

AT ™= M
Av=0Aw D = damping torque
Aj _% %=G+JB (in-phase with Aw)
AT, = DA Sg = synchronizing torque
AT, | PAI D, + s, (90° out of phase with Aw)
Aw  DAv

https://www.gevernova.com/content/dam/Energy_Consulting/global/en_US/
pdfs/GE_- SSO_Risk_Analysis_Protection_and_Mitigation_Techniques.pdf

Industry perspective (Bruce English)

SSTl is due to the interaction of torque mechanical dynamics,

while torque is influenced by the grid characteristics.

GE Energy Consulting Involvement in SSR

Mohave: 1st SSR event involving series caps
* Unit was radial on-line with 7 of 8 SC modules

* 30 Hz oscillation grow over many seconds until shaft failure
occurred : Dec '70 & Oct '71

* GE EC team determined root cause & solution

Over the past 40 years GE EC has:
Developed analysis tools, protection and mitigation concepts

» Performed SSR analysis on over well over 100 turbine-
generators

+ Designed protection and mitigation systems for a full range
of SSR issues

* Analysis and solutions provided for GE and non-GE units
world-wide

Tuoketuo Power Plant, China

The generator is viewed as a voltage source and the
current is influenced by the LC resonance which further
influences the torque.

Feedback Loop: The tricky things of quantitative
Ao ™ Av — 1} modeling:
Excites ) .
Electrical * Which frame? Static or dq
Resonance

frame?

Simplification: A voltage phasor
has a magnitude and an angle.
Which is influenced more by
mechanical dynamics?

AT = Ai ‘_J *
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shows the peak at 16 Hz.

Series compensation makes the peak more

severe.

The root locus diagrams show the sub-syn

mode pushes the 16-Hz mechanical mode to

instability.
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Concluding remarks:  Computing # intelligence

* RD Middlebrook: Computers are a very useful tool, but they are not going
to do your thinking for you.

* Charles Concordia: Sometimes | think they take too much into account, ...
People hate to miss anything.

* When giants walk the earth: In the early days, there were no handy
computing tools (EMT simulation, cloud computing, etc.) to use to model
and replicate dynamics. Yet, brilliant engineers made the power grid work
reliably.

* Human brain vs. computers (or Al): make abstraction & reasoning; ignore
less important details while focusing on most important elements.

* This talk shows that mechanism analysis for oscillations requires more
than computing. Simplifying and constructing feedback systems help
reveal the underlying mechanisms.
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