

June 25, 2025

Forecasting of Electrification and Data Centers

- More load growth than current planners have seen.
- Load growth of different character.
 - Increase due to increase in per-capita usage, rather than customer-base growth.

This increase in growth is driven by:

- Data center industry <u>is</u> the Internet.
- It is exploding with growth with several different segments.
- Industry's locational and business priorities shifted.
- Some studies project it will use 25% of all energy by 2060.

- Transportation electrification: a shift to EVs, rail systems, and port facilities, etc.
- Stationary electrification: a trend toward more use of electricity for heating and industrial processes due to:
- Technological advancement
- Government policies and societal concerns

Not One Industry

- Modeled as multisegment industry, the data center industry creates new markets for itself
- A different market with different owners and business models:
- A different design architecture and operation.

Analogous to petroleum industry in the mid-20th century growing into the petrochemical industry.

Data Center Forecast with Existing History

- Analyze and forecast load and growth historical trends by amount and location at the zonal, substation, or feeder level.
- Define load-curve shapes, breaking them into subcategories if needed.
- Apply locational, econo-demographic methods.
- Develop scenario-based forecasts when needed.
- Ensure a credible, transparent, and traceable methodology with solid technical credibility and a proven record of use.

Data Center Forecast with No Past History

Templating forecast based on similar regions with historical data and local factors.

Driving factors based on industry behavior and data centers deployment trends:

- Land use and zoning
- Incentives
- Available delivery capacity
- Proximity to transmission lines
- Proximity to airports

Driving factors for deployment trends and their relative weights:

	Criteria	Factors
	High weight	Fiber connectivity
		Market size
		Cloud availability
		Power delivery
	Medium weight	 Incentives
		• Taxes
		 Political stability
		 Vacancy
		 Development pipeline
		Sustainability
		Smart cities
	Low weight	Power cost
		Land price
		Environmental risk

Data Center Modeling in Forecasts as well as in Siting and Operating (Load-Curve) Models

We use a categorization approach based on three basic dimensions to track and model 15 slightly to very different industry models.

Econometric and demographic

Societal consumer-business

Industry-specific reports

Using deep research and a data-driven reverse-engineered model of a segment's business model, location preferences, and growth aggressiveness.

Models to forecast growth:

Electric Transportation Forecas

To analyze and forecast of the growth of electric transportation loads:

The four categories of EV forecasting must be considered.

1 Light-duty vehicles

As an end-use load category across all residential and light and medium commercial customer classes, with sensitivity to several economic and demographic variables.

Public charging network (local)

As a new commercial customer type (think of it as the 21st century equivalent of gasoline filling stations), with retail-type sensitivities and interactions with other classes.

3 Public charging network (over the road)

As a new industrial customer type (think of it as the 21st century equivalent of truckstop), with industrial sensitivities and interactions with the system "global model".

Fleets (light-, medium-, and heavy-duty)

As either a new industrial customer type or as a new end-use within current industrial classes. Either one will work and there is not much difference between the two.

LD Forecast

- How many EVs are expected in years to come?
- How will adoption rates vary with location?
- What types of EVs will grow more at each location?

- When will EVs start and stop charging?
- What distance will each EV travel each day?
- How fast will EVs charge?

- How will EVs impact system elements?
- When will peak demand happen?
- What is the expected energy demand?

MDHD Forecast

3

Address level bottom-up analysis to identify site locations

Forecast adoption and estimate loads

Map facility loads to feeder nodes, **Impact** analysis with hourly **Power Flow**

Evaluate mitigation options: managed charging, DERs, and infrastructure upgrades

SICCODE DMV

Adoption curves

Regulations

Scenario analysis

Economics

Load forecasting is more complex and difficult.

Revisions needed to:

- Address the more complex per-capita consumption growth.
- Include study of several new "uncertainty modes" percapita growth brings.
- Accommodate the higher growth rates that will be seen.

Planning is more complex, too, for the same, and other reasons.

T&D planning, and the forecasting behind them:

- Need more and different coordination of T&D.
- Must look/plan farther ahead.
- Need to change "data emphasis" and models to recognize several changes in our knowledge.

Middle-point coordinated T&D planning

T&D planning functions need to be better integrated:

- Mutual but transmission led planning of the substation level.
- Over a longer time-period than the lead time on T, D, DER, or NWA contract lifetimes.
- With certain characteristics.

Accelerate Successful Outcomes for Your Projects.

919-334-3000

quanta-technology.com

info@quanta-technology.com

<u>linkedin.com/company/quanta-technology/</u>

twitter.com/quantatech

For information on this presentation, contact:

Farnaz Farzan

919-275-0996

fafazanl@quanta-technology.com

