ESIG Fall Workshop October 22nd 2024

Large Loads: Interconnection, Planning and Reliability Considerations

Julieta Giraldez, Director of Integrate Grid Planning, EPE Ahmed Rashwan, Director of Transmission Planning and **Operations, EPE**

ING ENERGY INTE

Agenda

1. Large Loads

2.Forecasting and Modeling

3. Planning for Interconnection

4. Operational and Market Considerations

"By failing to prepare, we are preparing to fail"

- Benjamin Franklin

Large Loads

Large Loads Applying to Connect

Data Centers

- Large volume of requests across the continent, concentrated in the mid-Atlantic, Upper Midwest, Texas and California.
- Size: 10s-100s of MW

Cryptocurrency Mining

- Large volume of requests across the continent, heavily concentrated in Texas, Southeast and Northeast.
- Size: 10s-100s of MW

Electrification

- Transportation, buildings, residential
- Size: smaller individually, but aggregate can be 100s of MW

Commercial and Industrial

- Electric Arc Furnaces, Oil and Gas, Ammonia Green Hydrogen
- Size: Can be 100s of MW to GW

Forecasting of Spot Load and Large Loads

Findings from the ESIG Long-Term Load and DER Task Force

Forecasting Considerations

 There is no formal forecasting model that is used today to forecast large loads, in particular data centers

 \succ Very large (increasing!) binary and heterogenous \succ Drivers change, e.g. distance to fiber-optics network

- Data informing forecasting is obtained by utilities / ISOs directly from customers and developers seeking to interconnect
 - > Some utilities derate of rated capacity values based on recent experience or for later years*
- No standardization in data center consumption requirements, interconnection queue, modeling, etc.

010101 010101

*<u>Utility Experiences and Trends Regarding Data Centers</u> EPRI, Sep 2024 6

Modeling and Forecasting Concerns

- Metered versus requested rated power for large loads
 - E.g. discrepancy between power request and load that shows up
 - E.g. new customer type land developer only which increases uncertainty
- Project development timelines are speeding-up
 - E.g. 1GW data center ramping up to full capacity in less than 12 months
- Reconciliation of economic load growth and EV forecast with **bottom-up new customer service requests**
- Large increase in new large load requests but uncertainty in what is going to materialize
 - Little confidence in forecasting for data center loads

Collaboration and Coordination Words of the day!

- Federal, state, regulatory, industry, customer and utility collaboration and coordination is key to preparing for planning and interconnection of large loads
- Need to develop a standardized interconnection request process, improving **planning tools** and models and standardized framework for load forecasting with large loads, in particular with data centers

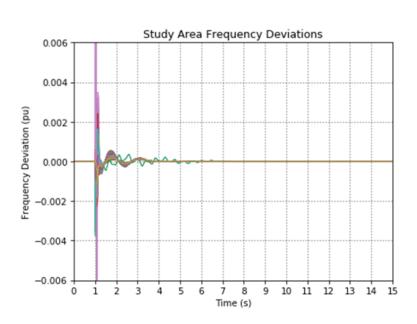
Planning

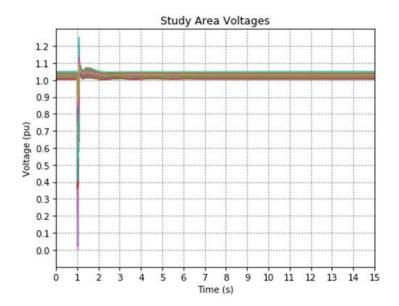
Planning for Large Load Interconnections

Steady State Studies

- Consider the full amount of load being proposed
- Identifies potential transmission upgrades required to serve full load
- Considers participation type
- For firm loads, require upgrades to consume beyond the level at which overloads or voltage issues occur
- Controllable/dispatchable load resources can connect their capacity up to an overload equal to the short term emergency rating. Given SCED doesn't resolve voltage issues, connections for controllable/dispatchable are limited to level at which voltage related upgrades are required.
- Need to consider fleet impacts in defining contingencies, may required assessment of large load ramp-ups and downs

Short Circuit


 Maximum fault currents at the interconnection substation for sizing switching devices and determining relay settings

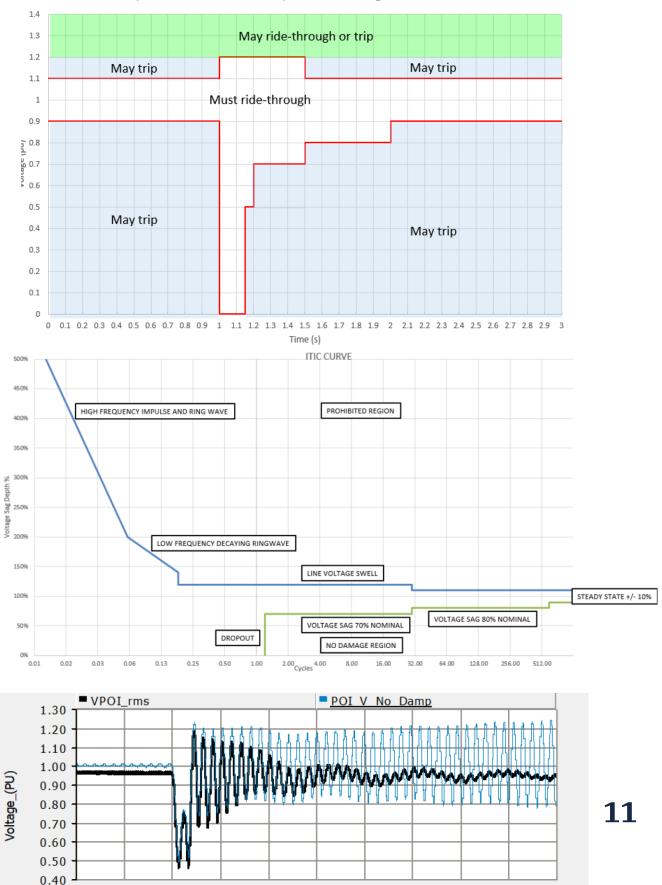

Transient Stability Studies

• Angular stability, transient voltage stability and frequency deviation assessment

Planning for Large Load Interconnections

Voltage Ride-Through

- The unexpected loss of large loads can have significant impacts on system performance, including cascading outages.
- Ensuring large loads are able to ride-through faults outside their protection zone critical for reliability. (e.g. PJM 1,500 MW of data centers were lost)
- ITIC curve (IT equipment tolerance) currently have loads dropping out after one cycle when voltage is below 0.7 pu. Some UPS can help with power conditioning.
- ERCOT has proposed RMS Voltage Ride-Through requirements for large loads


Subsynchronous Studies

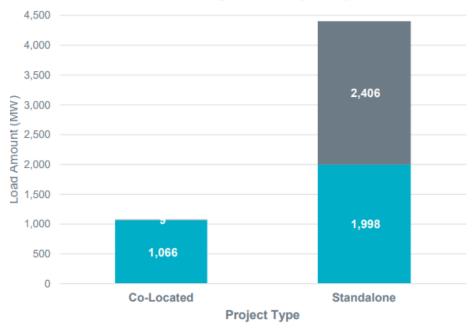
- **Ferroresonance**: With incorporation of large transformers on high voltage systems, ferroresonance risks need to be assessed. Risk can be screened based on topology.
- **Resonance**: With transmission upgrades and reconfiguration due to large load interconnections, screening for SSR is required.
- **Controller Interaction**: Required for facilities with SVCs, STATCOMs, other controllers and also heavy motor loads

Proposed ERCOT RMS VRT Requirement for Large Loads at POI

Planning for Large Load Interconnections

Co-located Projects

- With transmission limitations becoming more prevalent with load growth across the continent, co-location of generation and load facilities has become attractive.
- Largely separate generation interconnection and load interconnection study processes have made co-location more attractive
- For example, ERCOT recently approved 5.5 GW of new load, of which ~ 1GW was co-located
- Numerous hyperscalers considering co-locating with SMRs, and even restarting nuclear facilities (e.g. Three Mile Island)


Costs and Risks

- Utilities have collectively shared some concerns about the certainty of new data center and other load expected consumption levels.
- In many cases, to integrate these new loads, system upgrades are required.
- To ensure the cost of the upgrade is recovered over an expected time horizon, utilities have tabled a take-or-pay approach (e.g. Duke), capital payments up-front and special rate categories (e.g. AEP).

Approved to Energize by Project Type

Observed Non-Simultaneous Peak Remaining Approved to Energize Load

Source: ERCOT LLI Status Update July 2024

Operations and Markets


Operational Considerations

Operating Philosophy of Large Loads

- Which loads will be passive and which will be price responsive, without being necessarily controllable/dispatchable?
- Will load behavior be impacted by non-traditional factors, such as marginal fuel type? Many tech companies are looking to reduce their carbon footprint and may decide to optimize where they route compute load accordingly.
- Will any potential load shifting affect an entire fleet or only a percentage?
- How will we appropriately model load shifting in EMS and MIS Security Analysis?
- What will be the approach to potential fleet load modelling in advisory schedules that inform unit commitments?

Load Variability

Ramping and Voltage

• Large load level variability can result in voltage swings which may necessitate including dynamic compensation devices as connection requirements.

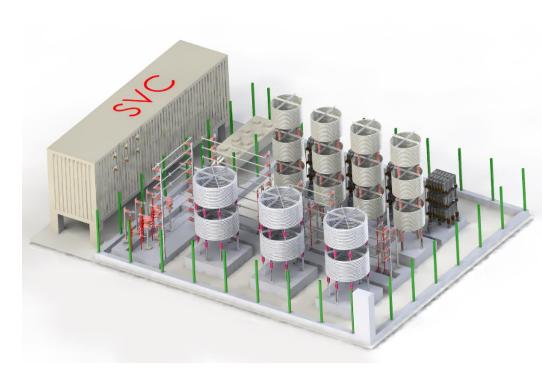
Flicker

• Frequency of load and as a consequence voltage change can impact power quality.

Frequency Regulation

• What are the expected intra-dispatch active power changes that can be expected? How do these expected variations impact the required amount of AGC?

Event/Contingency Modeling


• If there is potential for loads to shift as a fleet, will need to model these events in planning and operational analyses

Forced Oscillations

• Spiking/pulsating nature of some loads can result in forced oscillations when their frequency is near natural modes

Market Considerations

Virtual Transactions

- Virtual transactions are a hedging mechanism that were initially established to increase convergence between day-ahead and real-time market schedules.
- Scheduling algorithms may need to evolve to consider the impact of factors that could influence large load behavior (e.g. external market prices, marginal fuel) to prevent systematic differences between day-ahead and real-time market results.
- When systematic differences are present, virtual transaction related costs can be expected to increase and attract attention of market monitors.

Operating Reserve

 Recently ERCOT reported instances of loads consuming during scarce and high price situations because they were scheduled to provide reserves. This is a counterintuitive outcome and current market design is driving unintended consequences.

Key Takeaways

Highlights

- Requesting operating philosophy information, including detailed load profiles and expected • variability, as part of interconnection requests will be vital to ensuring the appropriate scenarios are considered and **any requirements/restrictions** on behavior are appropriately incorporated into **Interconnection Agreements**. This will also ensure operations planning understands how to prepare for **real-time, and markets** are designed effectively.
- Planning studies will need to ensure that large loads are able to behave predictably, including riding \bullet through out-of-zone faults.
- **Cost allocation** will continue due to potentially high system upgrade costs associate with large loads, • and the **risk born by utilities** in undertaking these upgrades without appropriate certainty or collateral.
- **Co-location** will continue to be a theme as the large loads will look to find appropriate means to • interconnect as soon as practical.

Questions and

