

Impacts of Market Design on Storage Valuation

Erik G. Ela, Nikita G. Singhal

ESIG Spring Technical Workshop Webcasts April 9, 2020

Image: Second system
Image: Second system

Image: Second system
Ima

Key Challenges to value of ESRs as a flexibility resource

Resource adequacy contribution limited by ESR levels and forecast accuracy

Thin Ancillary service markets

Key Challenges to value of ESRs as a flexibility resource

State of charge management option may impact amount of value provided by ESRs

Ability to manage VER forecast deviations is limited by real-time market horizons

Degradation impacts and costs may limit the amount of flexibility that would otherwise be available

ISO software influences what an ESR offer may actually represent

Based on EPRI Research

State of Charge Management: Introduction

No definitive statement within FERC Order 841 on what SOC-Management means resulting in different interpretations and requests for clarifications (does not require ISO-SOC-Management; requires provision of SOC related bid parameters by ESRs and for ISOs to "*consider* them")

www.epri.com

State of Charge Management: Introduction

Energy Storage Alliance¹:

- SOCM: involves monitoring and causing to change the SOC, normally by adjusting resource operating parameters or power level, and perhaps including the placing and/or adjusting of offers/bids, to modify dispatch, generally to achieve a desired SOC level or range, or avoid an undesired SOC level or range, generally in real-time.
- Self SOCM: should include the ability to adjust offers/bids and/or operating parameters, such as upper and lower limits, on a short-term basis, including from one dispatch interval to the next (i.e., every 5 minutes).

Electric Power Research Institute:

- ISO-SOCM: ISO monitors current SOC, monitors and calculates anticipated SOC, and other related ESR parameters (e.g., roundtrip efficiency levels) and makes scheduling decisions that explicitly lead to a bid-based optimal and feasible energy level at all times.
- Self SOCM: ESR asset owners (market participants) provide cost/quantity offer curves that, to the best ability of the owner, lead to desired and feasible SOC level at all times without need for <u>explicit</u> ISO intervention.

[1] Private communication with the Energy Storage Alliance, used with permission.

State of Charge Management: Options

Benefits dependent on market design

High Renewable Scenario

EPRI, Palo Alto, CA: 2019. 3002013868.

- Self-management found to *increase* costs when storage deployed \checkmark
- *Greatest* cost reduction and profits observed when ISO manages state of charge and optimizes to lower costs \checkmark
- Self-management still benefits efficiency if feasibility checked, allowing *greater flexibility* for participant \checkmark
- Challenges may be *exacerbated* by duration of storage, amount of storage, and amount of renewables \checkmark

The way electric storage is operated and how it participates within the market may have a substantial impact on the magnitude of benefits it provides to the system.

Importance of Energy Storage Modeling

	Case 1	Case 2
Production Costs	\$2.523B	\$2.587B
Cost savings of applying dynamic reserves to area	\$-1.1M	\$31M
Reserve shortages*	16 MWh	85,000 MWh

*All shortages are non-NERC reserves (e.g., regulation or replacement)

- Case 1: Simplistic Modeling. Four pumped storage resources can each operate from 400 MW pumping to 400 MW generating within five minutes
- Case 2: Validated pumped storage model. Fixed speed pumping, 75% min gen, 10 MW/min, 30-min transition, etc.
- Combined pumped storage unit capacity less than 5% of peak load

Careful modeling avoided a \$60M mistake, and difference between a good and bad proposal!

Questions?

Together...Shaping the Future of Electricity

Market Clearing Software Subtleties

ISO-SOC-Management

Sequential SCED Software Option

CAISO, NYISO

Security Constrained Unit Commitment (SCUC) Unit Commitments

24-hour Day-ahead Horizon

SPP, ISO-NE, MISO, PJM

Previous hour's SOC is a <u>parameter</u> in dispatch/LMP calculation

Previous hour's SOC is a <u>variable</u> in dispatch/LMP calculation

1) SIEMENS: CAISO, 2) ABB: NYISO, ERCOT, 3) GE/ AREVA: SPP, ISO-NE, MISO, PJM

