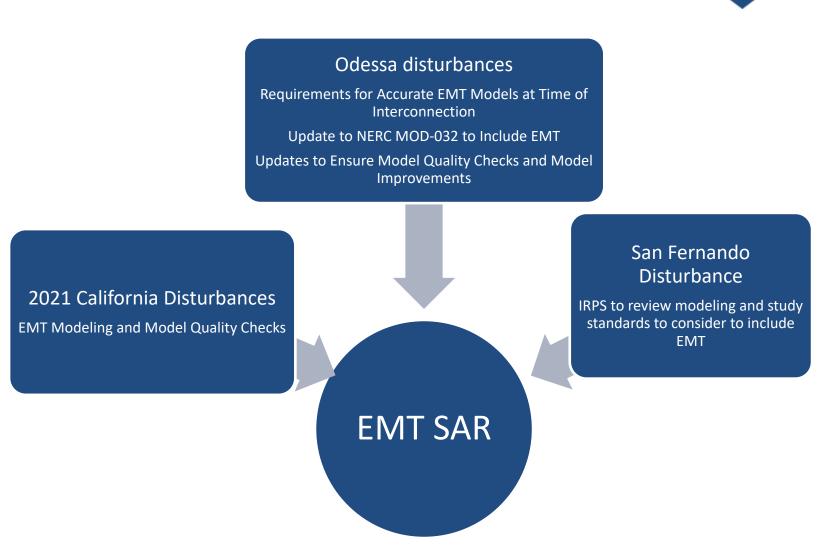
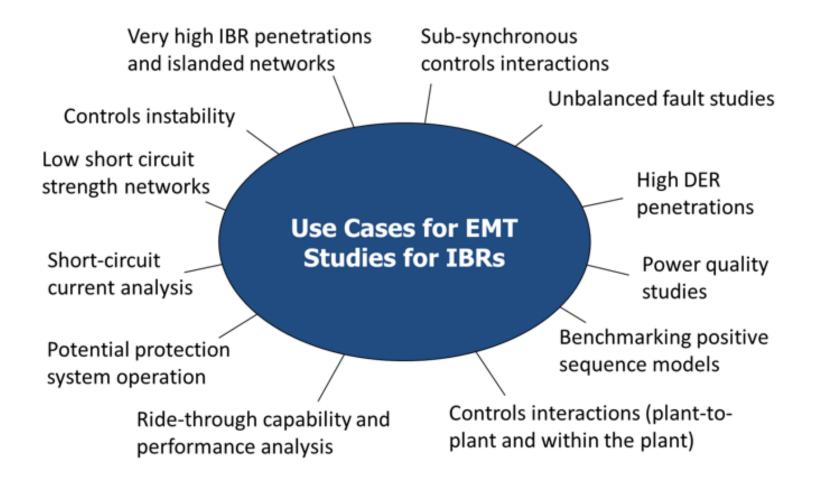

Reliability Guideline: Electromagnetic Transient (EMT) Modeling for BPS-Connected Inverter-Based Resources – Requirements and Verification Practices

Alex Shattuck – Senior Engineer, Engineering & Security Integration March 29, 2023 ESIG Spring Technical Workshop


NERC Disturbance Reports


https://www.nerc.com/pa/rrm/ea/Pages/Major-Event-Reports.aspx

Drivers for EMT SAR

Odessa Modeling Deficiencies

Can the models recreate the cause of reduction?

NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION

Table 3.1: Solar PV Tri	pping and Modeling Capabilit						
Cause of Reduction	Can Be Accurately Modeled in Positive Sequence Simulations?	Can Be Accurately Modeled in EMT Simulations?					
Inverter Instantaneous AC Overcurrent	No	Yes	Table 3.4: Review of Solar PV Facilities				
Passive Anti-Islanding (Phase Jump)	Yes ^a	Yes			Positive		
Inverter Instantaneous AC Overvoltage	No	Yes	Facility ID	Reduction [MW]	Cause of Reduction Sequence M Capable		
Inverter DC Bus Voltage Unbalance	No	Yes	Plant B	133	Inverter phase jump (passive anti-islanding) tripping. Unknown*	Unknow	
Feeder Underfrequency	No ^b	No ^c	Plant C	56	Inverter phase jump (passive anti-islanding) tripping. Unknown	Unknow	
Incorrect Ride-Through Configuration	Yes	Yes	Plant E	159	Inverter ac overvoltage tripping. Unknown*	Unknow	
Plant Controller Interactions	Yes ^d	Yes ^e	- Plant U	136	Inverter ac overvoltage tripping; feeder Unknown	Unknow	
Momentary Cessation	Yes	Yes		130	underfrequency tripping.	Unknow	
Inverter Overfrequency	No ^b	Yes	Plant F	46	Unknown. Unknown	Unknow	
PLL Loss of Synchronism	No	Yes	Plant I	196	Inverter phase jump (passive anti-islanding) tripping. Unknown	Unknow	
Feeder AC Overvoltage	Yes ^f	Yes	Plant J	106	Inverter dc voltage imbalance tripping. Unknown	Unknowr	
Inverter Underfrequency	No ^b	Yes	Plants K + L	130	Momentary cessation/inverter power supply failure. Unknown	Unknow	
			Plant M	146	Inverter dc voltage imbalance tripping; incorrect inverter ride through configuration.	Unknow	
			Plant N	35	Unknown. Unknown	Unknow	
			Plant O	15	Unknown. Unknown	Unknowr	
			Plant P	10	Inverter ac overcurrent tripping. Unknown*	Unknow	

Plant Q

Plant R

Plant S

Plant T

12

261

94

176

Inverter ac overcurrent tripping.

Inverter ac overcurrent tripping.

Inverter dc voltage imbalance tripping.

Inverter ac overcurrent tripping; feeder

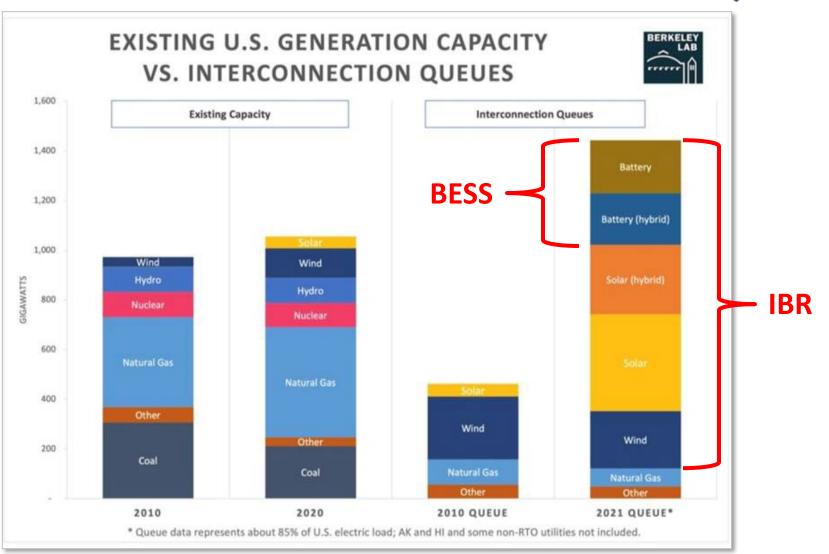
Do the models recreate the cause of reduction?

underfrequency tripping.	Unknown*	Unknown		
RELIABILITY	RESILI	ENCE SE	CURITY	

Unknown

Unknown*

Unknown*


Unknown

Unknown

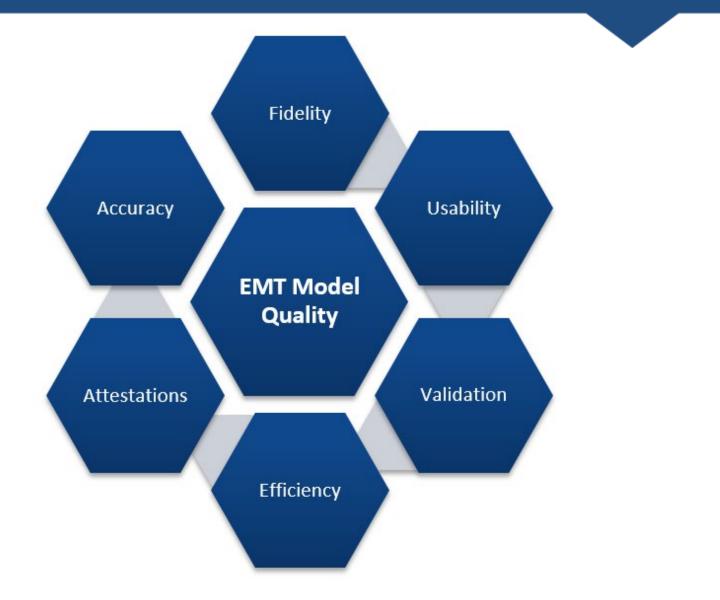
Unknown

Links arrive

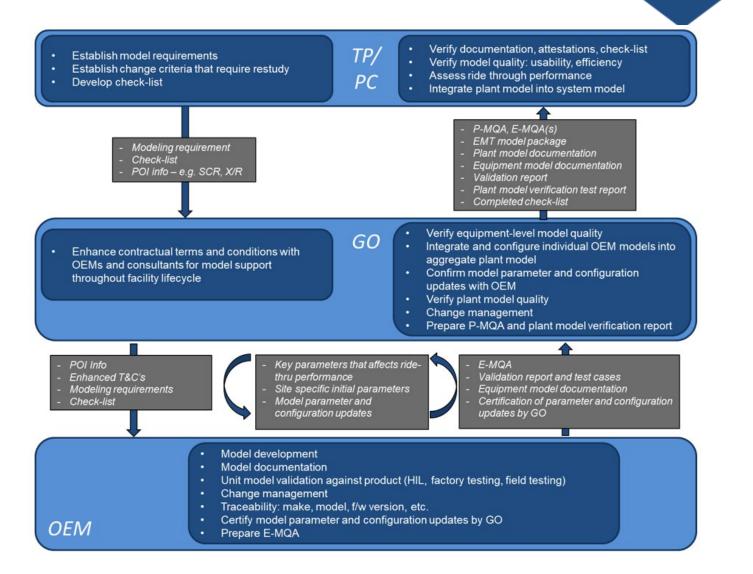
6

RELIABILITY | RESILIENCE | SECURITY

Why EMT Guidelines?

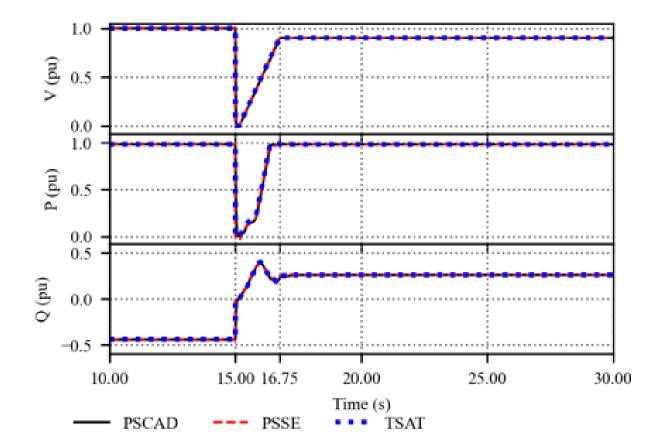

- EMT models can be utilized to capture previously unstudied performance:
 - Majority of grid faults are unbalanced
 - Control instability and interaction with other IBRs
 - Causes of IBR trip/output reduction from recent disturbance reports
 - Instantaneous inverter AC overcurrent and overvoltage
 - Inverter DC unbalance protection
 - Unbalance current protection
- To address gaps identified in recent disturbance reports
 - Models not matching facilities
 - Inability to reproduce unreliable performance reported trips, output reduction
- Reference for TPs and PCs as they begin performing or coordinating EMT studies during the interconnection study process or during planning assessments

- Guidance for EMT modeling requirements, model quality checks, and model verification practices
 - Guidance to help industry close current EMT modeling knowledge gaps
 - Guidance to give industry a foundation of knowledge for new modeling requirements and practices
- Guidance to make EMT models *available* to TPs and PCs for the purposes of reliability studies – interconnection studies per FAC-002 and planning assessments per TPL-001
- Model quality, model verification, and performance issues are addressed both during interconnection studies and during annual case creation and planning assessments
 - Guidance to help industry close current gaps between interconnection studies and installed equipment



Model Quality

Model Verification



- Transmission Planers and Planning Coordinators should establish clear and consistent EMT model benchmarking requirements in their interconnection study process requirements
 - Necessary to ensure EMT models match actual performance
- Model benchmarking should be performed for any modifications to actual plant settings, performance, or applicable model updates
- Model verification is necessary to ensure studied performance can be put into operation at comissioning

EMT Benchmarking vs Positive Sequence

RELIABILITY | RESILIENCE | SECURITY

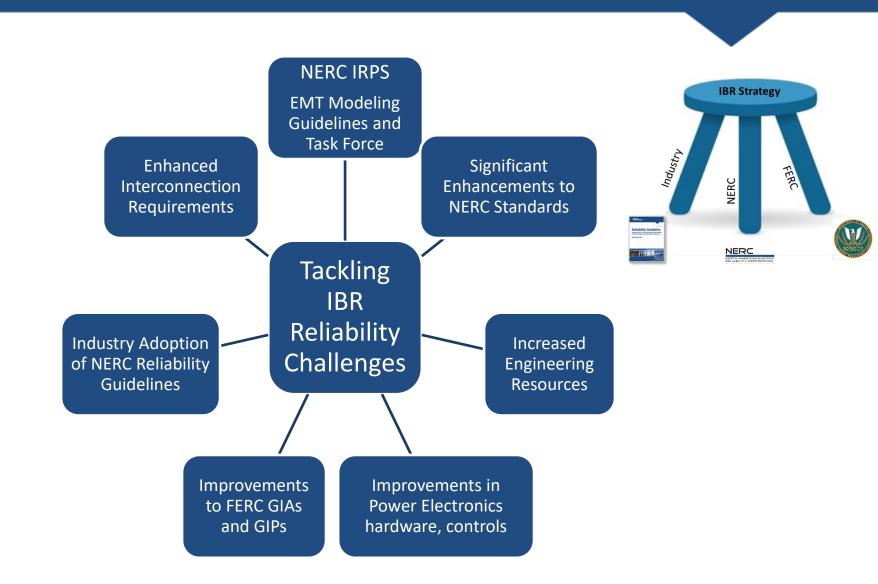
- Transmission Planners and Planning Coordinators should develop engineering expertise in EMT modeling and studies
 - EMT studies are expected to be performed much more frequently
 - Expertise will be needed to perform and review EMT studies and results
- Academic Institutions with power engineering programs should improve curricula regarding EMT modeling and studies
 - Assist in raising industry knowledge floor for EMT modeling and concepts
- Research institutions and national laboratories should consider developing educational materials

Part One of a Two Part Guideline

EMT Modeling (Part I)

- Requirements Development
- Quality Verification
- Benchmarking with Positive Sequence Model
- EMT Study Use Cases

EMT Studies (Part II)


- Screening Techniques
- Scope Development
- Study Processes
- Study Execution
- Other relevant topics
- Legacy facilities
- Synchronous generation and network models
- IEEE 2800-2022

- To support and accelerate industry adoption of EMT modeling and simulation in their interconnection and planning studies of BPS-connected IBRs
- Provide guidance and references materials to TPs and PCs to more adequately assess BPS impacts and reliability risks of interconnecting IBRs.
- Develop technical documents to support BPS planning under increasing penetrations of BPS-connected IBRs
- To participate in the EMTTF, reach out to <u>aung.thant@nerc.net</u> or <u>alex.shattuck@nerc.net</u>

Industry Efforts

Questions and Answers

Alex Shattuck

Senior Engineer, Engineering & Security Integration North American Electric Reliability Corporation (470) 259-0109 alex.shattuck@nerc.net