

Potential Impacts of Climate Change on Bulk Power System Planning and Operation

Bri-Mathias Hodge, Ph.D. Chief Scientist and Distinguished Member Research Staff, NREL Associate Professor – Electrical, Computer & Energy Engineering, CU Boulder Associate Director and Fellow – Renewable and Sustainable Energy Institute

ESIG Meteorology and Markets Workshop – June 8th, 2022

The Elephant in the Room

Monthly global mean temperature 1851 to 2020 (compared to 1850-1900 averages)

1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	° F	°C
	1032	1000			1050		1050	1055					1004				> 2.7	> 1.5
			A						A		AD		A		AD		2.16 to 2.7	1.2 to 1.5
1868	1869	1870	1871	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1.8 to 2.16	1 to 1.2
				X				X			X						1.44 to 1.8	0.8 to 1
1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899	1900	1901	1.08 to 1.44	0.6 to 0.8
					XX												0.72 to 1.08	0.4 to 0.6
1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917	1918	0.36 to 0.72	0.2 to 0.4
		A A	A A	Store Store				A A	N							A A	0.18 to 0.36	0.1 to 0.2
1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	0 to 0.18	0 to 0.1
	- SEG		- SE	-		-SEG							-				-0.18 to 0	-0.1 to 0
							A			A	A		A	SA			-0.36 to -0.18	-0.2 to -0.1
1936	1937	1938	1939	1940	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	-0.72 to -0.36	-0.4 to -0.2
				X				AIN			A						-1.08 to -0.72	-0.6 to -0.4
1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	-1.44 to -1.08	-0.8 to -0.6
	X						Y											
1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	Dec	Jan Feb
	A A	A A	A A			A A		Y	A A					Y			0.1	
1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	Sep YE	AR Apr
1907	1900	1909	1990	1991	1992	1993	1994	1995	1990	199	1990	1999	2000	2001	2002	2003	Aug	May
															ALA.		Jul	Jun
2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020		
	Pof: https://www.isualcapitalict.com/global_temporature_graph_1851_2020/_Data: HadCRUT5 - Created by: @neilrkaye																	
Ref: <u>https:</u>	Ref: https://www.visualcapitalist.com/global-temperature-graph-1851-2020/ Data: HadCRUT5 - Created by: @neilrkaye																	

Climate-Driven Changes to Solar PV Power

3

Climate-Driven Changes to Wind Power

Climate Impacts - Planning

Climate Impacts - Operations

Load Changes with Temperature Changes - TVA

Source: Ralston Fonseca, Jaramillo, Berges, & Severnini, Climatic Change 2019

Duke Energy Carbon-Free Resource Integration Study

🔗 » Grid Modernization » Carbon-Free Resource Integration Study

Integrated Devices & Systems

Sensing, Measurement, & Forecasting

Power Systems Operations & Controls

Power Systems Design & Studies

Distribution Integration

Transmission Integration

Transient & Dynamic Stability Analysis

Power Market Design

Integrated Energy System Simulation

SMART-DS

Security & Resilience

Institutional Support

Carbon-Free Resource Integration Study

In the Carbon-Free Resource Integration Study, NREL is investigating the impacts of varying scenarios of carbon-free generation on electric power systems in the Carolinas.

Duke Energy is working to cut CO₂ emissions by at least half (from 2005 levels) by 2030 and attain net-zero CO₂ emissions by midcentury. As it integrates increasing amounts of renewable and distributed energy resources into its electric power systems, Duke Energy commissioned this study to understand the integration, reliability, and operational challenges and opportunities ahead.

Phase 1 Study

For Phase 1 of the study, NREL performed an analysis of the Carolinas' carbon-free resource integration capability. Phase 1 included the evaluation of 12 scenarios to examine the impact of increasing levels of solar photovoltaic (PV) generation on the total percentage of carbon-free generation. The study evaluated wind, storage, and PV penetration scenarios reaching as high as 80% of annual carbon-free energy. Although Phase 1 does not make specific recommendations, it does provide high-level information about potential future resource mixes.

Stakeholder goals/objectives and inputs

(e.g. load forecast, restrictions on new capacity builds, planned retirements)

Overview of Phase II analysis

Capacity Expansion

Installed capacity in the Carolinas

2030 timeframe

- Policy results in increase solar and storage
- Base and policy cases are similar – highlights that a substantial amount of solar and storage are economic under default assumptions

2050 timeframe

- Additional solar, along with longer-duration storage resources and offshore wind
- Deployment of "RE-CTs" as a zero-carbon peaking resource (low-capacity factor)

Note: The coal retirement schedule for these results was specified prior to recent updates. A sensitivity exploring runs with additional coal retirements was tested in production cost modeling.

Capacity Expansion

🕶 Policy <table-cell-rows> Policy + no fossil

Cumulative CO₂ abatement cost through 2030 and 2050 (\$ per metric ton). Values in parentheses indicate range across ReEDS sensitivities.

2030	2050
7 (6-20)	27 (9-34)

Curve illustrates cumulative avoided emissions vs. policy costs

- 2030-2035: steepness of the line reflects the fact that avoided emissions are relatively cheap
- 2035-2048: line flattens out; cost to mitigate are increasing
- 2048-2050: moving to zero carbon results in larger costs
 - Cost of removing the final 30-45 MMT of CO₂ are almost about as high as the cost of removing the first 186 MMT
 - Reflecting the increase in <u>average</u> cost of mitigation from ~\$7 per metric ton in 2030 to ~\$27 per ton in 2050

NREL | 11

Nodal results – Summer Peak Dispatch

- Coal replaced with natural gas, solar, and in the 2036 buildout wind
 - Gas CTs used heavily in the evening hours after coal is retired
 - Storage charges during the morning/daylight hours when solar is prevalent; discharges in the evening when solar ramps down

Nodal results – Winter Peak Dispatch

- 2012 weather year had a relatively brief winter peak which can be met primarily through a combination of nuclear, gas, solar, wind, and storage
- 2018 weather year had sustained low solar output + high load due to an extended cold snap
 - Demand peaks around 37 GW (annual peak)
 - Heavy use of Gas CC and CTs to meet demand
 - Storage charges during the day, discharges overnight
 - Offshore wind and imports help to meet remaining energy needs

RE-CT fuel consumption

- RE-CTs in the "no fossil" case are used to meet peaking requirements
 - Low annual capacity factor
 - High use when deployed
 - Plot illustrates the quantity of renewably-sourced fuel that needs to be provided to sustain output in those periods
 - Could be H2, biofuel, or some other peaking resource
 - Implies sufficient pipeline infrastructure or storage capacity to supply ~3 million mmBTU at a time, and that renewable fuel is available
 - Other technologies such as seasonal storage could also fill this role

Acknowledgements

- Dr. Brian Sergi NREL
- Dr. Carlo Brancucci NREL (Encoord)

- Prof. Michael Craig NREL (Michigan)
- Prof. Paulina Jaramillo CMU
- Ignacio Losada Carreno NREL (Cornell)
- Dr. Omar Guerra NREL
- Dr. Sue Ellen Haupt NCAR
- Dr. Caroline Draxl NREL

Thank you!

