# **Project Overview** AC Stability Concepts in Support of LTRP

March 29, 2023 | ESIG Spring Workshop



# An Emerging Challenge

Long Range Planning (expansive scenario set) with a high inverter future +

Ledae

Practical challenges to modeling inverters

╋

Quickly evolving technology





# An Emerging Challenge

Long Range Planning (expansive scenario set) with a high inverter future +

Practical challenges to modeling inverters

+

Quickly evolving technology







#### The Big Picture of Stability Studies



3/29/2023

### The Big Picture of Stability Studies



#### it's necessary... 势 urder **EMT Our area of focus!** Ω Propo Ro Pos. Seq. Computational **Dynamics** & People! Gap! **Steady-**...sometimes. **State** When & where are important! Level of Detail ELOSENERGY HickoryLedge www.telos.energv 3/29/2023 6

# The Big Picture of Stability Studies

**EMT Studies...** 

...ain't easy, but

### Voltage Stability & Grid Strength

**Transmission Systems, Historically** 





#### Voltage Stability & Grid Strength

#### Transmission Systems, Historically



#### **Weakening Grids**







#### Voltage Stability, Extending the Analogy to Resources



#### Voltage Stability, Extending the Analogy to Controls



#### Resource Characterization, Quantified



# Introducing a Dynamic Impedance

A Familiar Thevenin Equivalent







Consider a Steady-State Voltage Stability Analysis (P-V Curve)

P-V Curve for a N-1 Contingency Event (No dynamic impedance utilized)







Consider a Steady-State Voltage Stability Analysis (P-V Curve)

P-V Curve for a N-1 Contingency Event (No dynamic impedance utilized)









Consider a Steady-State Voltage Stability Analysis (P-V Curve)

P-V Curve for a N-1 Contingency Event (No dynamic impedance utilized)







HickorvLedae

Consider a Steady-State Voltage Stability Analysis (P-V Curve)

P-V Curve for a N-1 Contingency Event (No dynamic impedance utilized)



OSENERGY





**GFM**-like resource at sending-end

Consider a Steady-State Voltage Stability Analysis (P-V Curve)

P-V Curve for a N-1 Contingency Event (No dynamic impedance utilized)



The IBR type assumed can make a large different in power transfer capability, considering dynamic stability limits!



# Integration with MISO LRTP



#### **Resource Level, by Resource Type**

Fast method that will include representation of IBR Types  $\rightarrow$  Enables evaluation of a large set of scenarios with varied resource technologies





#### A New Knob for Planning: Resource Type

Represent the **key stability characteristics** of **different resource mixes** in the **existing tools** 

At each region / location, a resource mix...





Potential to automate this for existing (steady-state) tools and contingency analysis databases



#### Thank You!

#### **Matt Richwine**

Matthew.Richwine@telos.energy

#### **Andrew Siler**

Andrew.Siler@telos.energy



Nick Miller Nicholas@hickoryledge.com



