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Interannual Wind Flow Challenges

Quantifying interannual variability
El Nifio (1998) minus La Nifia (1999)
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Changes and Variability in Wind and Solar Resource

Maps formed from NCAR’s 20 year Climate Four Dimension Data
Assimilation Database (CFDDA)

1985-2005 mean hub-height wind speed (m s™) 1985—2005 mean hub—height wind speed standard deviation (m s™)
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Interannual Variability of Solar Power

Maps formed from NCAR’s 20 year Climate Four Dimension Data
Assimilation Database (CFDDA)

1985—-2005 mean surface downward shortwave radiation (W m™%) 1985—2005 mean surface downward shortwave radiation standard deviation (W m™2)
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Regional interannual mean wind speed, fall, morning

Current Climate Wind Speed by Region, Time of Day, and Season

Regional interannual mean wind speed, fall, afternoon

Wind Speed m/s

Regional interannual mean wind speed, fall, evening

Wind Speed m/s

Regional interannual mean wind speed, fall, night

Daily Time Slices | Morning Afternoon Evening Night
(Local Time) 0600-1300 1300-1700 1700-2200 2200-0600
Seasons Summer Fall Winter Spring
June-August September- November- March-May
October February




Using Al to Determine Climatic Changes in Wind and Solar Resource

1985—2005 mean hub—height wind speed (m s™!)
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Apply SOM specific climate adjustment factors by season
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Using Output to Determine Energy Impacts

Is Wind Speed likely to change over the U.S. in s Solar Irradiance likely to change over the
a changing climate and will it vary by time of day U.S. in a changing climate and will it vary by
and season? time of day and season?
Change in regional mean wind speed 1995-2060, morning Change in regional mean solar radiation 1995-2060, morning
winter spring winter spring

0 2 4 6 8 10
percent change

percent change

NCAR Haupt, S.E., J. Copeland, W.Y.Y. Cheng, C. Amman, Y. Zhang, and P. Sullivan, 2016: Quantifying the Wind and Solar Pewer
Resource and their Inter-annual Variability over the United States under Current and Projected-Future Climate, Journal of Applied

UCAR Meteorology and Climatology, 55, pp. 345-363. DOI: 10.1175/JAMC-D-15-0011.1



Proxy Future Climate

v Predicted change in the Projected Change in Wind Speed by Season

frequency Of occurrence Of Change in regional mean wind speed 1995-2060, morning
the patterns is typically _, sring
+10% though this can o5 | | e
exceed +20% for certain

patterns

Regional changes are
oredicted to be within £10%
of current values

Seasonal dependence for
result

percent change
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Changing Climate
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* Mean temperature changes given for 2081-2100 relative to 1986-2005. Likely range of

temperature chan n 5%-95% interval acr M outputs. Source: [1]. : : :
be perature change based 5 0-95% Intervel across GC outputs. Sou C.e y Figure S1: Atmospheric CO, concentrations under SRES (left) and RCP
Mean temperature changes given for 2090-2099 relative to 1980-1999. Likely range of (right) emission scenarios. “Commitment” indicates a hypothetical

temperature change based on +/- 1 standard deviation of model averages. Source: [2]. scenario where CO, concentrations stabilize at roughly 400 ppm
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Energy Sector Implications

Power Component_Leve| |mpacts Potential Power SyStem Planning and
System (Agreement among Studies, Quality of Operations Implications
@elpulelelal=lsil Evidence, and Confidence in our Evaluation)

Increased total generation

Increased annual total and, to a greater extent,
peak electricity demand Increased investment requirement in generation
(high, robust, high) or demand response and more peaked
electricity prices
Reduced capacity value of thermal units,
requiring additional capacity investments

Electricity
demand

Increased summertime curtailments largely
Thermal contingent on enforcement of thermal discharge
generators regulations

(high, robust, high) If curtailments correlated, increased operational

reserve requirements

. : : Increased transmission investment
Reduced transmission capacity during peak

Transmission demand periods

) : Exacerbated congestion and contingencies
(medium, low, medium)
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Energy Sector Implications

and the Pacific Northwest
Hydropower (medium, medium, medium)

Reduced annual hydropower resource across South
(medium, medium, medium)

Decreased wind resources on average across US
(low, medium, low)
Wind Large regional and temporal (seasonal and time of day)

heterogeneity in wind resource changes
(medium, medium, medium)

Decreased solar PV resource in California
(medium, low, low)
Increased solar PV and CSP resource in the Southeast
(high, medium, medium)
Greater average increases in CSP than solar PV
resource across US
(high, medium, high)
Large regional and temporal (seasonal and time of day)
heterogeneity in solar resource changes
(medium, medium, medium)

Solar

NCAR

Reduced summertime hydropower resource in California Reduced capacity value, depending on release

schedule and head height, requiring additional
capacity investments
Increased dispatching of other units

Increased wind investment or reliance on other
zero-carbon technologies to meet
decarbonization targets
Regional changes in capacity values, requiring
increased capacity investments

Increased solar investment or reliance on other
zero-carbon technologies to meet
decarbonization targets
Regional changes in capacity values, requiring
Increased capacity investments
Increased investment in CSP relative to PV
plants
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Monthly wind CF ( — )
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Case Study — Texas - Wind

Changes in Wind capacity factor agree
well across models.

« Changes from +1.3 to 3.5% ann avg
« Increasesin Wand E TX

« Decreases in Panhandle & S TX

« Seasonal changes rather small

« Increase CF over most of day

Changes in Capacity Factors
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NCAR Reference and future periods correspond to 1995-2005 and

UCAR 2040-2050, respectively.
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Extreme Hourly Variability Case StUdy = Extreme Hourly Variability
of Solar Capacity Factors [ILI of Wind Capacity Factors
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Change, 163, 745-766.
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Summary:

Climate projections should include
information on variability on multiple
temporal and spatial scales to be most
useful.

Estimates require high-resolution model
simulations (cloud-resolving scales)

ldeally, one needs to have a
consistent database of
correlated wind, irradiance,
temperature, humidity, ..., both
current and future climate,
for coordinated planning.
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