ESIG METEOROLOGY AND MARKET DESIGN FOR GRID SERVICES WORKSHOP



### RESEARCH PRIORITIES AND OPPORTUNITIES IN UNITED STATES COMPETITIVE WHOLESALE ELECTRICITY MARKETS

### MARKET DESIGN UNDER DEEP DECARBONIZATION

**TODD LEVIN** Electricity Markets Team Lead Argonne National Laboratory



Denver, Colorado June 14, 2023

## BACKGROUND

- U.S. electricity systems are decarbonizing
  - Due to cost reductions and social objectives
- Decarbonized systems have several key characteristics including:
  - Resources with zero-fuel cost
  - Resource with variable and uncertain, weather-dependent generation
  - Resources with opportunity costs
  - Increasing participation from distributed resources
- These have implications for efficient competitive wholesale market design
  - Ensuring that markets provide appropriate short and long-term incentives valued resources
- Challenges will emerge as we approach 100% carbon-free systems
  - Not exclusive to 100% decarbonized systems
- There is a growing body of literature related to these issues
  - Many high-level questions remain





## **QUESTIONS FOR CONSIDERATION**

- Are current market frameworks largely sufficient for a decarbonized future?
  - If so, what incremental modifications are needed?
  - Which should be prioritized for early implementation?
- Are larger fundamental shifts required?
  - What might these look like?
  - How would they be implemented in practice?
- In either case, substantial research is still needed





## APPROACH

- Seven technical areas
  - Provide a broad overview of:
    - Market challenges
    - Potential solutions
    - Associated research needs



- Building upon a previous report\* that:
  - Provided more technical depth on market challenges in these same areas
  - Did not have a particular focus on decarbonization
  - Did not explicitly consider governance and policy

\*Sun et al. 2021. **Research Priorities and Opportunities in United States Competitive Wholesale Electricity Markets.** (No. NREL/TP-6A20-77521). <u>https://www.nrel.gov/docs/fy21osti/77521.pdf</u>





### **RESEARCH CHALLENGES (2021)**

|                                                           |                                                 |                                                |                                                                   | PRIORITY                                      |                                          |                                     |                                                                      |
|-----------------------------------------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------|------------------------------------------|-------------------------------------|----------------------------------------------------------------------|
|                                                           | Challenge 1                                     | Challenge 2                                    | Challenge 3                                                       | Challenge 4                                   | Challenge 5                              | Challenge 6                         | Challenge 7                                                          |
| Reliability and<br>Flexibility                            | New<br>reserve/flexibility<br>products          | Deliverability of<br>reserve products          | Ancillary service<br>market redesign                              | Temporal considerations                       | Frequency response<br>and other services | Cost recovery during<br>emergencies |                                                                      |
| Emerging<br>Technologies                                  | Reliability services with growing VRE           | Emerging resource<br>market participation      | Resource adequacy<br>contribution of<br>emerging resources        | Risk hedging<br>through forward<br>contracts  |                                          |                                     |                                                                      |
| Resource Adequacy                                         | Reliability<br>assessment and<br>implementation | Capacity credit<br>calculation                 | Accommodating<br>state-level policies<br>into capacity<br>markets | Defining capacity<br>demand curves            | Capacity<br>contribution of<br>imports   | Firm capacity for extreme weather   | Risk mitigation in<br>capacity markets<br>and bilateral<br>contracts |
| Price Formation                                           | Zero-marginal cost<br>world                     | Scarcity and shortage pricing                  | Multi-period market<br>pricing and<br>settlement                  | Active demand-side<br>participation           | Carbon pricing or<br>GHG emissions       |                                     |                                                                      |
| T&D Coordination<br>and Wholesale-<br>Retail Interactions | Grid services<br>provision from DERs            | Improved situational<br>awareness of DERs      | Modeling of TSO-<br>DSO coordination                              | TSO-DSO<br>coordination<br>mechanisms         | Data management<br>and communication     | Regulatory and policy concerns      | Distribution level<br>management                                     |
| Transmission<br>Planning                                  | Long run grid<br>planning<br>uncertainties      | Transmission<br>investment co-<br>optimization | Grid planning needs<br>identification                             | Benefit<br>measurement and<br>cost allocation | FTR auction<br>efficiency                | FTR revenue<br>adequacy             |                                                                      |



### **RESEARCH CHALLENGES (2023)**

|    |                                | Challenge 1                                         | Challenge 2                                                      | Challenge 3                                                   | Challenge 4                                                                              | Challenge 5                                                                                | Challenge 6                            |
|----|--------------------------------|-----------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------|
|    | Reliability and<br>Flexibility | Changing reliability needs<br>and grid requirements | Economic procurement of reliability services                     | Reliable operations during extreme events                     | Deliverability of reserve products                                                       | Inelastic demand                                                                           |                                        |
|    | Emerging<br>Technologies       | New market participation models                     | Improved technology<br>representation in<br>scheduling/ dispatch | Adequate mechanisms<br>for managing investment<br>risk        | Market power<br>monitoring and<br>mitigation                                             | Equitable technology<br>deployment                                                         |                                        |
| Re | source Adequacy                | Economically efficient<br>market design             | Supply-side uncertainty<br>and variability                       | Demand-side uncertainty                                       | Spatial and temporal resolution                                                          | Climate and extreme<br>weather                                                             | Infrastructure interdependencies       |
| F  | Price Formation                | Improved scarcity pricing                           | Enhanced market clearing mechanisms                              | Uncertainty<br>representation in price<br>formation           | Reflecting the value of<br>clean energy and carbon<br>remissions reductions in<br>prices |                                                                                            |                                        |
| т  | &D Coordination                | Coordinated transmission and distribution planning  | Improved market<br>participation models for<br>DERs and DSRs     | Communications,<br>controls and dispatch<br>software          | Policy and regulatory<br>structures for DER<br>integration                               | Capturing reliability<br>contributions from the<br>distribution system                     | Improved tariff<br>structures          |
|    | Transmission<br>Planning       | Multi-regional coordination                         | Coordination with<br>generation expansion<br>planning            | Slow interconnection processes                                | Need for robust and equitable cost allocation                                            | Capturing value of non-<br>wires solutions                                                 | Consideration of HVAC or<br>HVDC lines |
| G  | Bovernance and<br>Policy       | Tensions between state and federal policies         | Investments driven by policies rather than prices                | Lack of mandate for a<br>clean, firm energy market<br>product | Reliability concerns from<br>load growth and firm<br>resource retirements                | Policy incentives do not<br>account for resource<br>adequacy or operational<br>reliability |                                        |







**ENERGY** Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.



|                                | Challenge 1                                      | Challenge 2                                  | Challenge 3                               | Challenge 4                           | Challenge 5      | Challenge 6 |
|--------------------------------|--------------------------------------------------|----------------------------------------------|-------------------------------------------|---------------------------------------|------------------|-------------|
| Reliability and<br>Flexibility | Changing reliability needs and grid requirements | Economic procurement of reliability services | Reliable operations during extreme events | Deliverability of reserve<br>products | Inelastic demand |             |
|                                |                                                  |                                              |                                           |                                       |                  |             |
|                                |                                                  |                                              |                                           |                                       |                  |             |
|                                |                                                  |                                              |                                           |                                       |                  |             |
|                                |                                                  |                                              |                                           |                                       |                  |             |
|                                |                                                  |                                              |                                           |                                       |                  |             |
|                                |                                                  |                                              |                                           |                                       |                  |             |
|                                |                                                  |                                              |                                           |                                       |                  |             |
|                                |                                                  |                                              |                                           |                                       |                  |             |
|                                |                                                  |                                              |                                           |                                       |                  |             |





#### **Reliability and Flexibility**

- Analyze services that are currently unpaid due to excess availability to understand if payments will be required in future systems to guarantee their provision
- Develop improved optimization and simulation tools that account for the full range of costs and benefits of reliability services in future systems
- Develop grid model inputs that <u>link with weather data and climate projections</u> to capture operational reliability impacts of extreme weather events
- Development of improved algorithms that <u>account for reserve deliverability</u> in scheduling, dispatch, market clearing





|              | Challenge 1              | Challenge 2          | Challenge 3             | Challenge 4    | Challenge 5          | Challenge 6 |
|--------------|--------------------------|----------------------|-------------------------|----------------|----------------------|-------------|
|              |                          |                      |                         |                |                      |             |
|              |                          |                      |                         |                |                      |             |
|              |                          |                      |                         |                | 1                    | [           |
| Emerging     | New market participation | Improved technology  | Adequate mechanisms     | Market power   | Equitable technology |             |
|              | models                   | representation in    | for managing investment | monitoring and |                      |             |
| Technologies |                          | scheduling/ dispatch | risk                    | mitigation     | deployment           |             |





#### **Emerging Technologies**

- Design incentive compatible market participation models for all technologies.
- Develop computationally efficient tools for <u>SOC management and capacity degradation in batteries.</u>
- Develop new market power metrics that account for <u>opportunity costs</u> and behavior of energy limited resources.





|                   | Challenge 1                   | Challenge 2             | Challenge 3             | Challenge 4          | Challenge 5         | Challenge 6       |
|-------------------|-------------------------------|-------------------------|-------------------------|----------------------|---------------------|-------------------|
|                   |                               |                         |                         |                      |                     |                   |
|                   |                               |                         |                         |                      |                     |                   |
|                   |                               |                         |                         |                      |                     |                   |
|                   |                               |                         |                         |                      |                     |                   |
|                   |                               |                         |                         |                      |                     |                   |
| Resource Adequacy | Economically efficient        | Supply-side uncertainty | Demand-side uncertainty | Spatial and temporal | Climate and extreme | Infrastructure    |
| neoouroe nacquacy | market design and variability | and variability         | Demana side uncertainty | resolution           | weather             | interdependencies |
|                   |                               |                         |                         |                      |                     |                   |
|                   |                               |                         |                         |                      |                     |                   |
|                   |                               |                         |                         |                      |                     |                   |
|                   |                               |                         |                         |                      |                     |                   |
|                   |                               |                         |                         |                      |                     |                   |
|                   |                               |                         |                         |                      |                     |                   |
|                   |                               |                         |                         |                      |                     |                   |
|                   |                               |                         |                         |                      |                     |                   |
|                   |                               |                         |                         |                      |                     |                   |
|                   |                               |                         |                         |                      |                     |                   |
|                   |                               |                         |                         |                      |                     |                   |
|                   |                               |                         |                         |                      |                     |                   |
|                   |                               |                         |                         |                      |                     |                   |
|                   |                               |                         |                         |                      |                     |                   |





#### **Resource Adequacy**

- Determine which market design frameworks and products best support resource adequate investments (and retirements) in <u>systems dominated by resources with zero marginal costs</u>
- Increased temporal granularity of thermal generator outages to account for <u>hourly/daily/seasonal</u> <u>differences in expected outage rates</u>
- Develop <u>improved representation of low probability high impact events</u> (such as extreme events) in reliability assessment and capacity expansion tools
- Analyze the impact of <u>common mode failures across multiple infrastructures</u> on electricity system reliability





|                 | Challenge 1               | Challenge 2                         | Challenge 3                          | Challenge 4                                         | Challenge 5 | Challenge 6 |
|-----------------|---------------------------|-------------------------------------|--------------------------------------|-----------------------------------------------------|-------------|-------------|
|                 |                           |                                     |                                      |                                                     |             |             |
|                 |                           |                                     |                                      |                                                     |             |             |
|                 |                           |                                     |                                      |                                                     |             |             |
|                 |                           |                                     |                                      |                                                     |             |             |
|                 |                           |                                     |                                      |                                                     |             |             |
|                 |                           |                                     |                                      |                                                     |             |             |
|                 | 1                         |                                     |                                      |                                                     |             | 1           |
|                 |                           | Faborood market clearing            | Uncertainty                          | Reflecting the value of                             |             |             |
| Price Formation | Improved scarcity pricing | Enhanced market clearing mechanisms | representation in price<br>formation | clean energy and carbon<br>remissions reductions in |             |             |
|                 |                           |                                     |                                      | prices                                              |             |             |
|                 |                           |                                     |                                      | · · ·                                               |             |             |
|                 |                           |                                     |                                      |                                                     |             |             |
|                 |                           |                                     |                                      |                                                     |             |             |
|                 |                           |                                     |                                      |                                                     |             |             |
|                 |                           |                                     |                                      |                                                     |             |             |
|                 |                           |                                     |                                      |                                                     |             |             |
|                 |                           |                                     |                                      |                                                     |             |             |





#### **Price Formation**

- Assess market power impacts of different scarcity pricing schemes
- Analyze the interplay between scarcity pricing and resource adequacy mechanisms
- Assess benefits of co-optimization and more <u>frequent market clearing</u>
- Analyze price formation interactions between clean energy incentives and carbon policy.





|                  | Challenge 1               | Challenge 2              | Challenge 3           | Challenge 4           | Challenge 5            | Challenge 6     |
|------------------|---------------------------|--------------------------|-----------------------|-----------------------|------------------------|-----------------|
|                  |                           |                          |                       |                       |                        |                 |
|                  |                           |                          |                       |                       |                        |                 |
|                  |                           |                          |                       |                       |                        |                 |
|                  |                           |                          |                       |                       |                        |                 |
|                  |                           |                          |                       |                       |                        |                 |
|                  |                           |                          |                       |                       |                        |                 |
|                  |                           |                          |                       |                       |                        |                 |
|                  |                           |                          |                       |                       |                        |                 |
|                  |                           |                          |                       |                       |                        |                 |
|                  |                           |                          |                       |                       |                        |                 |
|                  | Coordinated transmission  | Improved market          | Communications,       | Policy and regulatory | Capturing reliability  | Improved tariff |
| T&D Coordination | and distribution planning | participation models for | controls and dispatch | structures for DER    | contributions from the | structures      |
|                  |                           | DERs and DSRs            | software              | integration           | distribution system    |                 |





### **T&D** Coordination

- Identify the main <u>regulatory and technological barriers</u> that prevent ISOs/RTOs from coordinating transmission and distribution planning decisions
- Determine which <u>new products</u> (e.g., reactive power, voltage support) will be necessary to facilitate wholesale market participation of DERs
- Analyze <u>cost-benefit tradeoffs of different market structures</u>, considering central optimization by the ISO or local optimization by the DSO or any potential structure in between
- Develop optimization and simulation methodologies that consider <u>DER contribution to T&D system</u> reliability
- Analyze the impact of different <u>customer tariff structures</u> on wholesale electricity markets





|              | Challenge 1    | Challenge 2          | Challenge 3          | Challenge 4               | Challenge 5     | Challenge 6              |
|--------------|----------------|----------------------|----------------------|---------------------------|-----------------|--------------------------|
|              |                |                      |                      |                           |                 |                          |
|              |                |                      |                      |                           |                 |                          |
|              |                |                      |                      |                           |                 |                          |
|              |                |                      |                      |                           |                 |                          |
|              |                |                      |                      |                           |                 |                          |
|              |                |                      |                      |                           |                 |                          |
|              |                |                      |                      |                           |                 |                          |
|              |                |                      |                      |                           |                 |                          |
|              |                |                      |                      |                           |                 |                          |
|              |                |                      |                      |                           |                 |                          |
|              |                |                      |                      |                           |                 |                          |
|              | η,             | Coordination with    |                      | ,                         |                 |                          |
| Transmission | Multi-regional | generation expansion | Slow interconnection | Need for robust and       |                 | Consideration of HVAC or |
| Planning     | coordination   | planning             | processes            | equitable cost allocation | wires solutions | HVDC lines               |
|              |                |                      |                      |                           |                 |                          |
|              |                |                      |                      |                           |                 |                          |





#### **Transmission Planning**

- Developing new algorithms that iterate between TEP and GEP to reach consensus
- Analyze impact of <u>interconnection process reform</u> in which ISOs/RTOs perform a first-ready, first-served cluster study process
- Investigate the tradeoffs between required transmission expansions and <u>non-wires alternatives</u> for deep decarbonization
- Develop problem-specific software for <u>off-shore wind transmission</u> studies considering HVDC candidates and new technologies, e.g., multi-terminal voltage source converter-based HVDC





|                | Challenge 1            | Challenge 2                                      | Challenge 3               | Challenge 4               | Challenge 5              | Challenge 6 |
|----------------|------------------------|--------------------------------------------------|---------------------------|---------------------------|--------------------------|-------------|
|                |                        |                                                  |                           |                           |                          |             |
|                |                        |                                                  |                           |                           |                          |             |
|                |                        |                                                  |                           |                           |                          |             |
|                |                        |                                                  |                           |                           |                          |             |
|                |                        |                                                  |                           |                           |                          |             |
|                |                        |                                                  |                           |                           |                          |             |
|                |                        |                                                  |                           |                           |                          |             |
|                |                        |                                                  |                           |                           |                          |             |
|                |                        |                                                  |                           |                           |                          |             |
|                |                        |                                                  |                           |                           |                          |             |
|                |                        |                                                  |                           |                           |                          |             |
|                |                        |                                                  |                           |                           |                          |             |
|                |                        |                                                  |                           |                           |                          |             |
|                |                        |                                                  |                           |                           |                          |             |
|                |                        |                                                  |                           |                           |                          |             |
|                |                        |                                                  |                           |                           | Policy incentives do not |             |
| Governance and | Tensions between state | Investments driven by                            | Lack of mandate for a     | Reliability concerns from | account for resource     |             |
| Policy         |                        | d federal policies I policies rather than prices | clean, firm energy market |                           | adequacy or operational  |             |
|                |                        | · · ·                                            | product                   | resource retirements      | reliability              |             |





#### **Governance and Policy**

- Explore implications of switching from technology specific renewable energy credits to <u>clean energy</u> <u>attribute credits</u>, which can be produced from any net-zero generation resource.
- Evaluate whether markets can be <u>co-optimized to allow LSEs to meet reliability and clean energy</u> targets at a lower cost than procuring products separately.
- Determine who will contract with or otherwise procure <u>clean firm resources necessary to meet</u> <u>reliability targets</u>.
- Compare cost and reliability profile of <u>meeting clean energy demand in a centralized versus</u> <u>bilateral market</u> structure.





## **CLOSING THOUGHTS**

- Systems are evolving, markets may need to evolve as well
  - Fundamental economic principles should still be observed
- There is no single "correct" answer to any of these challenges
  - Many different possible approaches and pathways
  - Need to balance theory and implementation
  - Need to be flexible as systems and markets evolve
- What every path we take should consider:
  - Market objectives
  - Social objectives
  - Policy interactions
  - Realities of governance





## REFERENCES

- Aggarwal, S., Corneli, S., Gimon, E., Gramlich, R., Hogan, M., Orvis, R., Pierpont, B., 2019. Wholesale Electricity Market Design for Rapid Decarbonization. Energy Innovation, San Francisco, CA.
- Batlle, C., Rodilla, P., Mastropietro, P., 2021. Markets for Efficient Decarbonization: Revisiting Market Regulation and Design. IEEE Power and Energy Magazine 19, 20–28. https://doi.org/10.1109/MPE.2020.3033393
- Ela, E., Milligan, M., Bloom, A., Botterud, A., Townsend, A., Levin, T., 2014. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation (Technical Report No. NREL/TP-5D00-61765). National Renewable Energy Laboratory.
- Ela, E., Mills, A., Gimon, E., Hogan, M., Bouchez, N., Giacomoni, A., Ng, H., Gonzalez, J., DeSocio, M., 2021. Electricity Market of the Future: Potential North American Designs Without Fuel Costs. IEEE Power and Energy Magazine 19, 41–52. https://doi.org/10.1109/MPE.2020.3033396
- Hogan, W.W., 2022. Electricity Market Design and Zero-Marginal Cost Generation. Curr Sustainable Renewable Energy Rep 9, 15–26. https://doi.org/10.1007/s40518-021-00200-9
- Joskow, P.L., 2019. Challenges for wholesale electricity markets with intermittent renewable generation at scale: the US experience. Oxford Review of Economic Policy 35, 291–331. https://doi.org/10.1093/oxrep/grz001
- Leslie, G.W., Stern, D.I., Shanker, A., Hogan, M.T., 2020. Designing electricity markets for high penetrations of zero or low marginal cost intermittent energy sources. The Electricity Journal, Special Issue: The Future Electricity Market Summit 33, 106847. https://doi.org/10.1016/j.tej.2020.106847
- Newbery, D., Pollitt, M.G., Ritz, R.A., Strielkowski, W., 2018. Market design for a high-renewables European electricity system. Renewable and Sustainable Energy Reviews 91, 695–707. https://doi.org/10.1016/j.rser.2018.04.025
- Olsen, A., Hull, S., Ming, Z., Schlag, N., Duff, C., 2021. Scalable Markets for the Energy Transition: A Blueprint for Wholesale Electricity Market Reform. Energy and Environmental Economics, Inc., San Francisco, CA.
- Pierpont, B., Nelson, D., 2017. Markets for low carbon, low cost electricity systems.
- Sun, Y., Frew, B., Levin, T., Hytowitz, R., Kwon, J., Mills, A., Xu, Q., Heidarifar, M., Singhal, N., Mello, P. de, Ela, E., Botterud, A., Zhou, Z., Hobbs, B., Montanes, C.C., 2021. Research Priorities and Opportunities in United States Competitive Wholesale Electricity Markets (No. NREL/TP-6A20-77521). National Renewable Energy Laboratory, Golden, CO.
- Tierney, S., 2018. Resource Adequacy and Wholesale Market Structure for a Future Low-Carbon Power System in California. Analysis Group.
- Wiser, R.H., Mills, A., Seel, J., Levin, T., Botterud, A., 2017. Impacts of Variable Renewable Energy on Bulk Power System Assets, Pricing, and Costs. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). https://doi.org/10.2172/1411668
- Wolak, F.A., 2021. Market Design in an Intermittent Renewable Future: Cost Recovery With Zero-Marginal-Cost Resources. IEEE Power and Energy Magazine 19, 29–40. https://doi.org/10.1109/MPE.2020.3033395
- Zhou, Z., Botterud, A., Levin, T., 2022. Price Formation in Zero-Carbon Electricity Markets: The Role of Hydropower (No. ANL-22/31). Argonne National Lab. (ANL), Argonne, IL (United States). https://doi.org/10.2172/1877029





# **TODD LEVIN** TLEVIN@ANL.GOV



**ENERGY** Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

