Resource Accreditation Considering Correlated Outages

Joel Dison Astrapé Consulting LLC 10/26/22

Astrapé Resource Adequacy Clients

Resource Accreditation

- Planning Reserve Margin (PRM) to maintain 0.1 LOLE based on three main uncertainty factors
 - Load variability (weather/customer usage patterns)
 - Load growth uncertainty
 - Generator outage variability
- Disconnect: Generator performance variability included in PRM while renewable variability addressed via ELCC analysis

Resource Accreditation

- Under a UCAP accreditation market, resource accreditation is converted to a perfectly available capacity equivalent value
 - Thermal resources: UCAP = ICAP * (1-EFORd)
 - Renewable/energy limited resources: Effective Load Carrying Capability (ELCC)
- In theory, when normalizing for perfectly available capacity, only load uncertainty drives the UCAP RM

Resource Accreditation

- However, UCAP accreditation may not be a good proxy for perfectly available capacity when accounting for fleet wide interactions of thermal resources
- Sum of all individual thermal resource UCAP values may be greater than the actual fleet wide contribution towards reliability (i.e., the thermal resource ELCC)
 - May or may not affect PRM
 - Key fleet wide interactive outage effect categories include:
 - 1. Outage variability
 - 2. Common mode failures
 - 3. Weather dependent outages
 - 4. Fuel availability outages

Thermal Outage Impact #1: Outage Variability

- What level of reserves are needed to cover the impact of outages?
 - UCAP accounting using EFORd presumes only average outages need to be addressed.

innovation in electric system planning

Average Outages Vs. Modeled Outages

Thermal Outage Impact #1: Outage Variability

- Outage variability is generally hidden in the PRM assessment.
- This issue would not be expected to affect PRM, only resource accreditation

Proposed Solution for Outage Variability

- Accreditation of conventional resources could be adjusted to properly reflect their contribution to reliability
 - E.g., Conventional Generator ELCC = (1 EFORd ADJ_{Var})
- Analysis suggests ADJ_{Var} could be 2.7% in the Winter and 4.6% in the Summer.
- Similar adjustments proposed for other correlated outage effects

Thermal Outage Impact #2: Common Mode Failure

- Most resource adequacy modeling randomly assigns availability status for each resource independently
- In reality, outages can be correlated between resources due to common mode failures (e.g., shared step-up transformers)

Thermal Outage Impact #3: Weather Dependent Outages

- Additional correlated outage impacts observed in historical data based on weather impacts
 - Cold weather events: frozen lines, frozen valves, critical sensor failures
 - Hot weather events: extended run times, heat stress on components

Source: Murphy, Sinnott, et. al. "A time-dependent model of generator failures and recoveries captures correlated events and quantifies temperature dependence."

Example of historical PJM generator performance

- Combined cycle outage rate as a function of median (black series) and 90% temperature observation (red series)
- At -10°C, CCs experienced ~4% higher forced outage rate than at 0°C

Thermal Outage Impact #4: Fuel Availability Outages

- Natural gas supply constraints known to occur during cold weather
- As much as 10% of natural gas supply can become unavailable at temperatures of 10°F (based on review of ERCOT 2021 event, 2014 Polar Vortex, 2011 FERC report on cold weather outages)
- Leads to an increase in cumulative outages for specific resource classes such as CTs and CCGTs

Modeling Summary

 Impact of incremental outages quantified as percentage adjustment factors (ADJ) to approximate the thermal resource ELCC value

• $ELCC_{Thermal Resource} = (1 - EFORd - ADJ)$

	Interactive Outage Effect Categories	Winter Accreditation Adjustment Factor (%)	Winter Capacity Credit ¹	Summer Accreditation Adjustment Factor (%)	Summer Capacity Credit
Standard Accounting Practice	Forced Outage Rate	5.0%	95.0%	5.0%	95.0%
Proposed Additional Considerations	Outage Variability	2.7%	92.3%	4.6%	90.4%
	Common Mode Failure Outages	2.3%	90.0%		
	Weather Dependent Outages	10.0%	82.3% ²	5.6%	84.7%
	Fuel Availability Outages ³	6.2%	76.1% ⁴		

^[1] Values shown in the Winter Capacity Credit and Summer Capacity Credit column are cumulative.

^[2] Impact calculated incremental to Outage Variability.

^[3] As studied in this analysis, Fuel Supply Outages are only applicable to natural gas units that do not have a backup supply source such as on on-site alternate fuel.

^[4] Impact calculated incremental to Weather Dependent Outages.

Joel Dison jdison@astrape.com

