

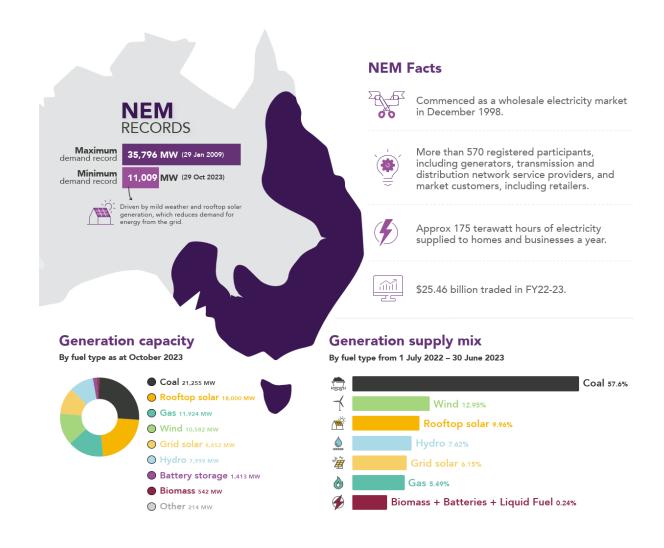
Grid Interconnection Process – Lessons from Australia

March 2024

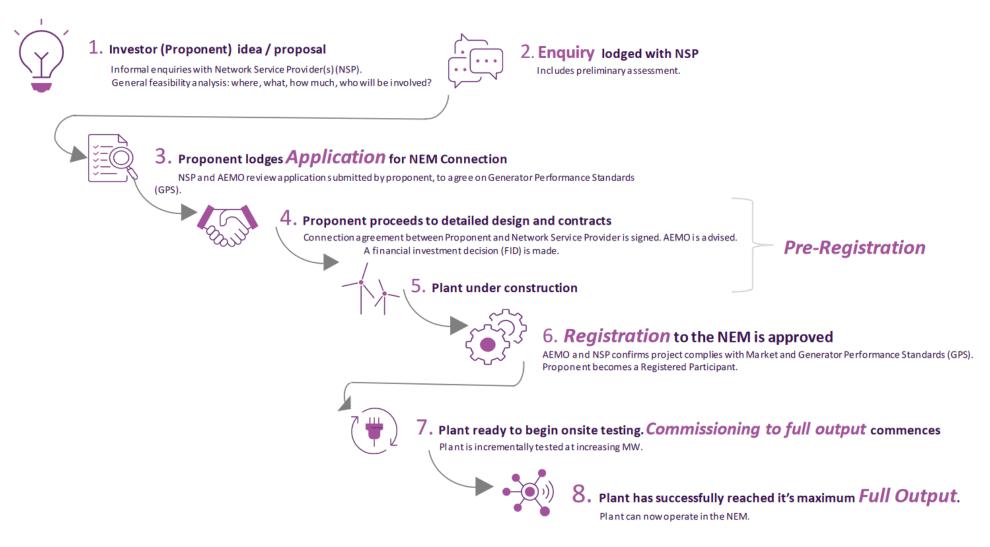
Grid Interconnection Process – Lessons from Australia

Agenda

Grid Interconnection Process – Lessons from Australia


- Introduction
- Part 1: Overview of AUS
 - Overview of the National Electricity Market
 - Overview of the Grid Interconnection Process
- Part 2: Lessons learned
 - Lesson 1: Writing rules
 - Lesson 2: Standards and engineering discretion
 - Lesson 3: Sample studies
 - Lesson 4: Skillset and workforce

Overview of AUS


Australia has an open electricity market, large grid, small population, dwindling synchronous fleet and rapid renewables growth

The Australian generation interconnection process is thorough and mostly standardised across the country

Overview of AUS

Australia has an installed capacity of ≈70GW, a queue of ≈100GW and is commissioning ≈3GW/year

1. Connections scorecard | AEMO | January 2024 [source]

Agenda

Grid Interconnection Process – Lessons from Australia

- Introduction
- Part 1: Overview of AUS
 - Overview of the National Electricity Market
 - Overview of the Grid Interconnection Process
- Part 2: Lessons learned
 - Lesson 1: Writing rules
 - Lesson 2: Standards and engineering discretion
 - Lesson 3: Sample studies
 - Lesson 4: Skillset and workforce

Lessons learned from AUS

Lesson 1: Define engineering terms when writing electricity rules

Asynchronous generating systems

:

- (1) to assist the maintenance of *power system voltages* during the fault:
 - (i) capacitive reactive current in addition to its pre-disturbance level of at least 4% of the maximum continuous current of the generating system including all operating asynchronous generating units (in the absence of a disturbance) for each 1% reduction of voltage at the connection point below the relevant range in which a reactive current response must commence, as identified in subparagraph (g)(1), with the performance standards to record the required response agreed with AEMO and the Network Service Provider; and

Lesson 1: Define engineering terms when writing electricity rules

Asynchronous generating systems

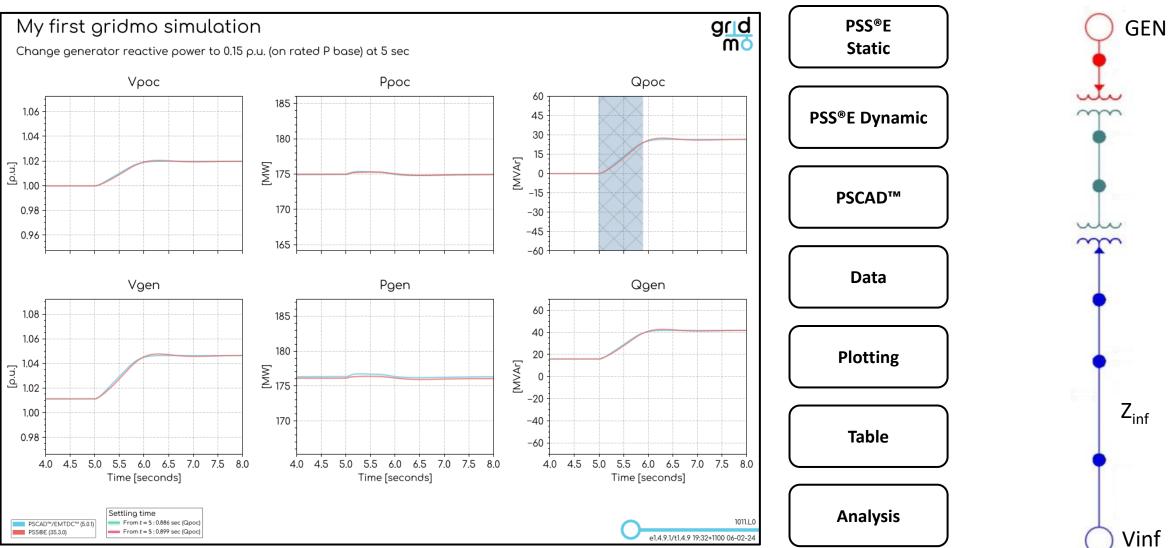
:

- (1) to assist the maintenance of *power system voltages* during the fault:
 - (i) capacitive reactive current in addition to its pre-disturbance level of at least 4% of the maximum continuous current of the generating system including all operating asynchronous generating units (in the absence of a disturbance) for each 1% reduction of voltage at the connection point below the relevant range in which a reactive current response must commence, as identified in subparagraph (g)(1), with the performance standards to record the required response agreed with AEMO and the Network Service Provider; and

maximum continuous current

In respect of a generating system:

(a) where assessed at the *connection point*, the current at the *connection point* corresponding to the largest amount of *apparent* power required by the *generating system's performance standard* under S5.2.5.1, at the *normal voltage*; and


Lesson 2: Electricity rules should encourage efficiency but leave room for engineering discretion

Generator Performance Standards can have three levels:

- Minimum Access Standard (MAS)
- Negotiated Access Standard (NAS)
- Automatic Access Standard (AAS)

Lesson 3: Complete a sample interconnection study each time when introducing new electricity rules

Lesson 4: Software engineering ≠ power systems engineering. Ensure the growing workforce is developing power systems knowledge

Power systems software:

Use cases:

Grid connection studies

500 tests

X 2 software

X 5 scenarios

X 2 submissions

5 iterations

grid

Jarman Stephens

E: jarman@gridmo.io

M: +61 417 573 195

W: www.gridmo.io