


## Timeline of Harmonization Efforts for IBR Grid Codes in Europe and the United States





- Grid codes specify the capabilities that IBRs must have in order to reliably interconnect to the grid.
- Diversity in grid codes requires multiple product designs and increase equipment costs.
- Comprehensive harmonized grid code for IBRs took 20 years to develop in Europe.
- The U.S. still has no harmonized grid code, some areas only apply minimal requirements as per FERC LGIA

# NERC Disturbance Events – Catalyst for IBR Standard Improvements



| Table 1.1: Causes of Solar PV Active Power Reductions |                               |                               |  |  |  |
|-------------------------------------------------------|-------------------------------|-------------------------------|--|--|--|
| Cause of Reduction                                    | Odessa 2021<br>Reduction [MW] | Odessa 2022<br>Reduction [MW] |  |  |  |
| Inverter Instantaneous AC Overcurrent                 | _                             | 459                           |  |  |  |
| Passive Anti-Islanding (Phase Jump)                   | _                             | 385                           |  |  |  |
| Inverter Instantaneous AC Overvoltage                 | 269                           | 295                           |  |  |  |
| Inverter DC Bus Voltage Unbalance                     | -                             | 211                           |  |  |  |
| Feeder Underfrequency                                 | 21                            | 148*                          |  |  |  |
| Unknown/Misc.                                         | 51                            | 96                            |  |  |  |
| Incorrect Ride-Through Configuration                  | -                             | 135                           |  |  |  |
| Plant Controller Interactions                         | -                             | 146                           |  |  |  |
| Momentary Cessation                                   | 153                           | 130**                         |  |  |  |
| Inverter Overfrequency                                | -                             | -                             |  |  |  |
| PLL Loss of Synchronism                               | 389                           | -                             |  |  |  |
| Feeder AC Overvoltage                                 | 147                           | -                             |  |  |  |
| Inverter Underfrequency                               | 48                            | -                             |  |  |  |
| Not Analyzed                                          | 34                            | -                             |  |  |  |

<sup>\*</sup> In addition to inverter-level tripping (not included in total tripping calculation.)



<sup>\*\*</sup> Power supply failure

#### NERC Disturbance Events, Causes of Tripping



#### Causes of tripping in eight NERC Disturbance Events

| Cause Code                     | 2016 - Blue<br>Cut Fire, CA | 2017 -<br>Canyon 2<br>Fire, CA | 2018 - April<br>May events,<br>CA |   | 2021 -<br>Odessa 1,<br>TX | 2021 - June<br>August<br>events, CA | 2022 -<br>Panhandle<br>event, TX | 2022 -<br>Odessa 2,<br>TX |
|--------------------------------|-----------------------------|--------------------------------|-----------------------------------|---|---------------------------|-------------------------------------|----------------------------------|---------------------------|
| AC low voltage protection      |                             |                                |                                   | x |                           | X                                   |                                  |                           |
| AC overcurrent protection      |                             |                                |                                   | x |                           | X                                   |                                  | X                         |
| AC overvoltage protection      |                             |                                |                                   |   | X                         | x                                   | x                                | X                         |
| DC low voltage protection      |                             |                                |                                   | x |                           | X                                   |                                  | X                         |
| DC overcurrent                 |                             |                                |                                   |   |                           | x                                   |                                  |                           |
| DC reverse current tripping    |                             | X                              | x                                 |   |                           |                                     |                                  |                           |
| Instant frequency tripping     | x                           |                                |                                   |   |                           |                                     |                                  |                           |
| Instant overvoltage tripping   |                             | X                              | x                                 |   |                           |                                     |                                  |                           |
| Intra-plant interactions       |                             | Х                              |                                   |   |                           |                                     | х                                | x                         |
| Momentary cessation            | X                           | X                              | x                                 | X | X                         | x                                   |                                  | X                         |
| Overfrequency protection       |                             |                                |                                   |   |                           | x                                   |                                  |                           |
| PLL synchronization/phase jump |                             | Х                              |                                   |   | х                         |                                     |                                  | х                         |
| Slow active power recovery     |                             | x                              |                                   | X | x                         | x                                   | х                                |                           |
| Underfrequency protection      |                             |                                |                                   |   | Х                         | х                                   |                                  | Х                         |

This matrix is MISO's summary of information contained in the reports.








#### IEEE 2800-2022 Standard

The standard **harmonizes** Interconnection Requirements for Large Solar, Wind and Storage Plants It is a **consensus-based** standard developed by over ~175 Working Group participants from utilities, system operators, transmission planners, & OEMs over 2 years It has successfully passed the IEEE SA ballot among 466 SA balloters (>94% approval, >90% response rate) Published on April 22, 2022 (Earth Day) Only when adopted by the appropriate authorities, IEEE

More Info at https://sagroups.ieee.org/2800/



Available from IEEE at <a href="https://standards.ieee.org/project/2800.html">https://standards.ieee.org/project/2800.html</a> and via IEEExplore: <a href="https://ieeexplore.ieee.org/document/9762253/">https://ieeexplore.ieee.org/document/9762253/</a>

standards become mandatory

#### **IEEE 2800-2022 Adoption Efforts**

'wholesale adoption'



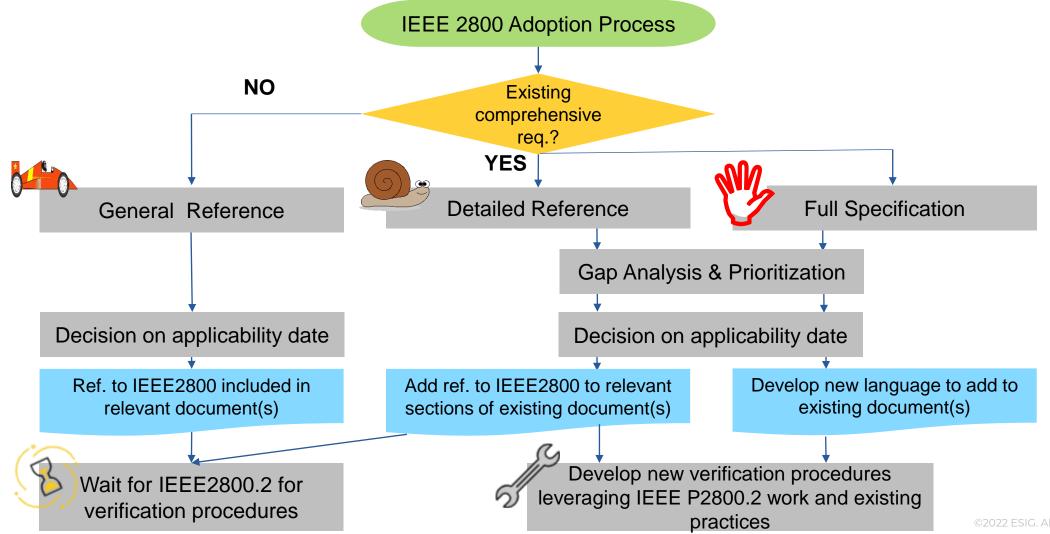


- Florida Power and Light
- Salt River Project (reference to IEEE2800 in the PPA)
- Southwest Power Pool



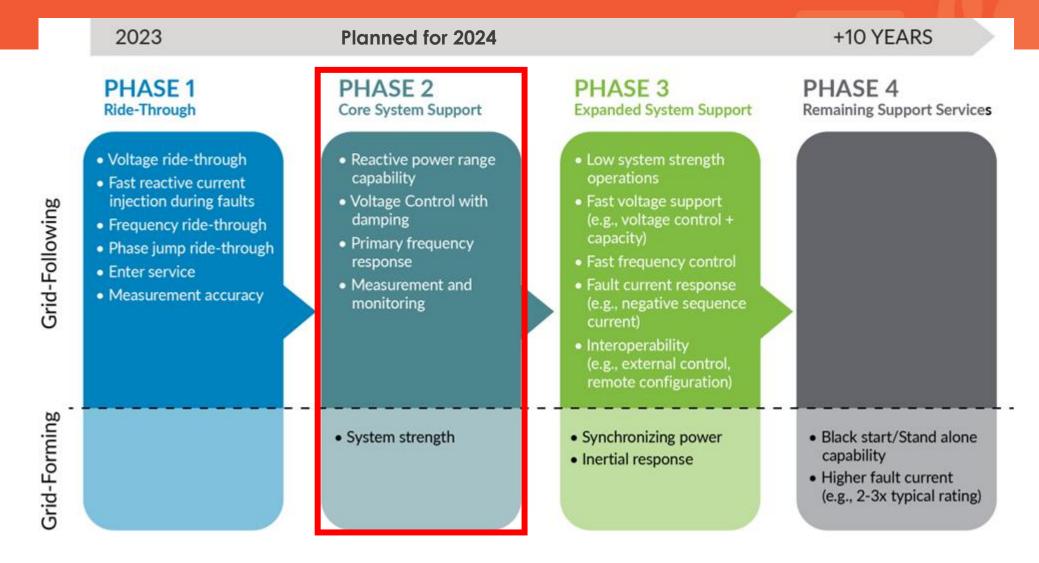


- ISO-NE
- MISO
- New York ISC
- Ameren ATXI (reference to adopted clauses in the GIA)
- Southern Company




ERCOT

Ameren IL


#### Adoption Process, Based on Current Practice





#### Adoption Priorities – MISO





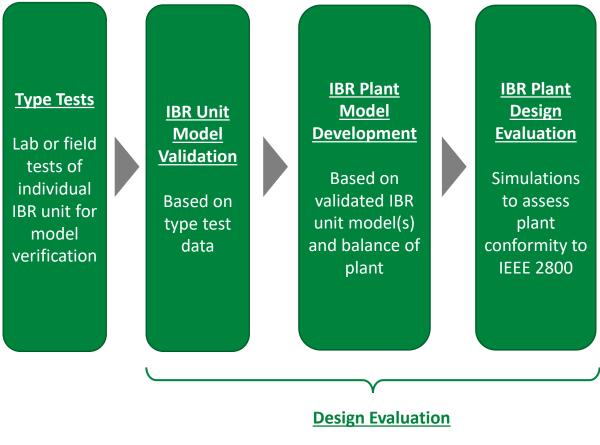




### **P2800.2 Summary**

<u>Title:</u> Recommended Practice for Test and Verification Procedures for Inverter-Based Resources Interconnecting with Bulk Power Systems

#### Scope:


- Defines recommended practices for test and verification procedures that should be used to confirm plant-level conformance of IBRs interconnecting with bulk power systems in compliance with IEEE Std 2800.
- Applies to IBRs interconnected to transmission and sub-transmission systems
- May also apply to isolated IBRs that are interconnected to an alternating current (AC) transmission system via dedicated voltage source converter high-voltage direct current (VSC-HVDC) transmission facilities, e.g., offshore wind farms
- Includes specifications for the equipment, conditions, tests, modeling methods, and other verification procedures that should be used to demonstrate conformance with IEEE 2800

### Overview of conformity assessment steps in IEEE P2800.2 Recommended Practice for Test and Verification Procedures for IBRs





# **Interconnecting with Bulk Power Systems**



**As-built** Installation **Evaluation** 

> Verification of installed plant

**Commissioning Tests** 

Partial field assessment of plant performance

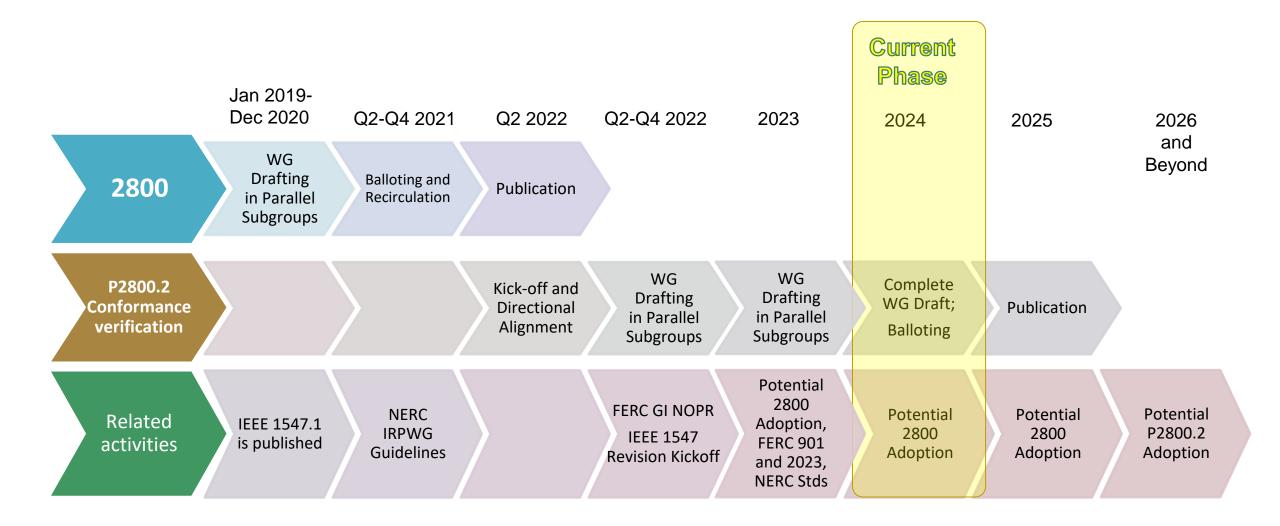
**Post-commissioning Monitoring** 

Monitoring of plant performance during grid events

**Post-Commissioning Model Validation** 

Based on commissioning test data

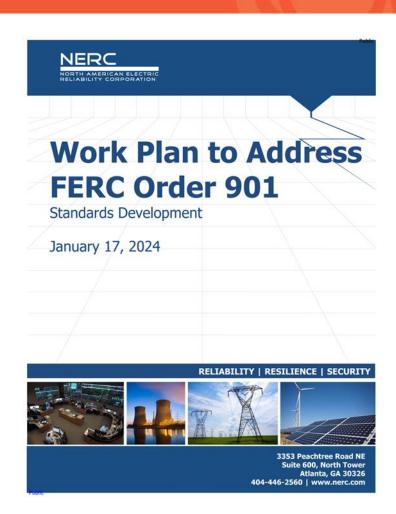
**Periodic Tests and Verifications** 


Plant construction complete

This is a general diagram of the process. Details are under development in IEEE P2800.2. Some variations permitted.






### **Potential Adoption Timeline**



#### FERC Order 901 and NERC Work Plan



- FERC Order 901 issued on October 19, 2023
- Directs NERC to submit a detailed standards development plan to address IBR reliability gaps in four areas
  - Data sharing
  - Model validation
  - Planning and operational studies
  - Performance requirements
- Informational filing due by January 17, 2024
- New or modified standards to be submitted by November 2026



#### NERC Order 901 Response Milestones





- 1. Submission of Order No. 901 Work Plan Completed: 01/17/2024
- 2. Development and filing of Reliability Standards to address
  - Disturbance Monitoring Data Sharing,
  - Performance Requirements, and
  - Post-Event Performance Validation for Registered IBR
- 3. Development and filing of Reliability Standards to address
  - Data Sharing and Model Validation for all IBR Proposed completion: 11/4/2025
- 4. Development and Filing of Reliability Standards to Address
  - Planning and Operational Studies Requirements for all IBR Proposed completion: 11/4/2026

Proposed completion: 11/4/2024

## NERC High Priority Projects



| Completed by the End of 2024                                    |                                            |                                          |  |  |  |
|-----------------------------------------------------------------|--------------------------------------------|------------------------------------------|--|--|--|
| 2020-02<br>Modifications to PRC-024<br>(generator ride-through) | 2021-03<br>Modifications to CIP-002 (TOCC) | 2021-07<br>Extreme Cold Weather          |  |  |  |
| 2021-04<br>Modifications to PRC-002 (data<br>sharing)           | 2016-02<br>Virtualization                  | 2023-07<br>TPL-001 Extreme Weather       |  |  |  |
| 2023-02<br>Performance of IBRs                                  | 2023-03<br>Internal Network Security       | 2022-03<br>Energy Assurance (Operations) |  |  |  |
|                                                                 | 2023-04<br>CIP-003 Low Impact Criteria     |                                          |  |  |  |
|                                                                 | 2023-06<br>Physical Security               |                                          |  |  |  |

### NERC Medium to Low Priority Projects



| Completed by 2025 and Beyond                       |                                                             |                                                                       |  |  |
|----------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| 2022-05<br>CIP-008                                 | 2020-06<br>Verification of Model and Data for<br>Generators | 2021-01 Verification and data reporting for active and reactive power |  |  |
|                                                    | 2023-01<br>EOP-004 IBR Event Reporting                      |                                                                       |  |  |
| 2017-01<br>Modifications to BAL-003-1.1            | 2019-04<br>Modifications to PRC-005-6                       | 2021-02<br>Modifications to VAR-002-4.1                               |  |  |
| 2021-08<br>Modifications for FAC-008               | 2022-01 Reporting ACE Definition and Associated Terms       | 2022-02<br>MOD-032, TPL-001 Footnote<br>13d                           |  |  |
| 2022-04 EMT Models in NERC MOD, TPL, FAC Standards | 2023-05<br>FAC-001/FAC-002 DER                              | 2023-08<br>MOD-031 Demand and Energy                                  |  |  |

#### Conclusions

ESIG

- Developers will build plants to existing minimum requirements.
- To maintain reliability with higher shares of IBRs comprehensive interconnection requirements are needed, incentivizing IBRs with state-of-the-art capabilities
- Adoption of IEEE2800 can provide harmonized set of interconnection requirements as well as uniformity and enhanced performance of the future IBR fleet.
- FERC Order 901 also recognizes this need for comprehensive IBR performance requirements and NERC Standards will follow.
- Important to actively participate in industry forums:
  - NERC Standard Drafting Teams
  - IEEE P2800.2,
  - NERC IRPS







# THANK YOU

Julia Matevosyan

julia@esig.energy