

Updates on

Probabilistic Near-term Uncertainty & Risk Assessments

Riaz Khan
Operations Engineer, Sr.
Resource Forecasting & Analysis, ERCOT

ESIG 2025 Forecasting and Markets Workshop *Nashville, TN*June 25, 2025

ERCOT Facts

\$3.8 billion

Transmission projects endorsed in 2024

85,508 MW

Record peak demand (August 10, 2023)

105,000+ MW

Expected capacity for Summer 2025 peak demand (May 2025 CDR)

miller 2025 peak demand	Installed	Record
ay 2025 CDR)	Capacity (MW)	Generation (MW)
Wind	39,781	28,550
Solar	30,586	27,071

IRR Installed Capacity

Key Takeaway: Solar and Wind have grown significantly in the recent years, and are projected to grow in the coming years

Renewable Impacts Net Load Uncertainty

- Wind and solar power generation are dependent on weather conditions, leading to fluctuating output.
- As the wind and solar portfolio grows, the associated uncertainty also rises.
- Increased variability makes it more challenging to accurately forecast the net load, complicating grid management and planning.

Load, IRR Forecasts

Weather Forecast
Raw forecasts tied to different
numerical models provided by
the vendors

Load Forecast

- Load forecast models are developed by ERCOT
- Different forecasts are tied to specific weather models
- Final model is picked based on the history, model performance, and weather conditions

Solar Forecast

- Two vendors
- POE50 and POE80 forecasts
- Extreme weather forecasts
- Probabilistic forecasts (POE50, 85, 90, 95, 98, 6 hours)

Wind Forecast

- Two vendors
- POE50 and POE80 forecasts
- Extreme weather forecasts
- Probabilistic forecasts (POE50, 85, 90, 95, 98, 6 hours)

PCAT Model

Uncertainty Buildup

168-hour forecast

- P50 forecast
- Uncertainty predicted from vendors (standard deviation)

Historical forecast error

 How much uncertainty we have compared to the P50 forecast (zscore)

Similar Day Approach

- To preserve seasonal and temporal characteristics of wind, solar, and load forecasts, similar day approach is used to narrow the sampling pool
- Cluster three years of historical forecasts based on net load pattern while considering look-ahead horizon

Historical Net Load 180 Historical Net Load **Hourly Profiles Adjusted Hourly Profiles** Apply solar and wind adjustment for today's K means capacity Clustering Apply load adjustment **k Clusters of Net** based on load trend **Load Shapes** Today's net load shape **k** Clusters of Net Load Shapes, sorted by similarity Output: pool of 90 historical days, most "similar" to the current day

seven independent clustering for seven days

Forced Outage Integration

- 1. Historical forced outage from the past three years
- 2. Get data ± 1 month from current month and of the same hour
 - 1. Including current month for a total of three months
- 3. Further filtering for forced outage magnitude in comparison to current forced outage amount
 - 1. ± 1250 MW as the starting point, if the sample pool has less than 90 days, loosen threshold until 90 days is reached
- 4. Random sample from the sample pool during MC simulation
 - 1. Randomly draw one day
 - 2. Get current snapshot view of forced outage for the next 168-hours
 - 3. Obtain maximum outage between the random draw and the snapshot forced outage

For longer look ahead horizons, the actual historical forced outage falls around the 62nd percentile*

PCAT Model Output – Uncertainty Bands

MC Simulation Results

Margin of 8/26 HE 18 As of 8/22 09:00

P(Margin < Threshold) at 8/26 HE 18 as of 8/22 09:00

Implementation

Next Steps

Achievement between summer 2024 – summer 2025

- Integrated the sim-day feature
- Implemented in the production
 - Visual dashboard in progress
- Included forced outage

Next Steps

- Account for other uncertainty components (e.g., batteries, price responsive resources)
- Apply sim-day individually to the net load components (Load, Wind, Solar)
- Explore other methods for calculating forced outage uncertainty
 - Aggregation of units
 - ML approach
 - Include weather variables
- Calculate probabilities of deploying AS (ECRS/Non-Spin)
- Historical analysis on acceptable risk level

