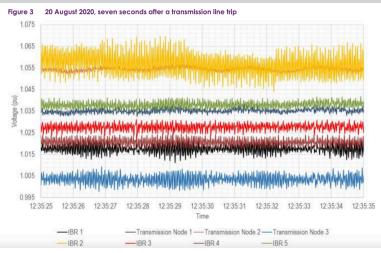


Small-Signal Stability Analysis of Blackboxed IBRs: A Frequency-Domain Tool

ESIG Fall Technical Workshop - October 2024


Assoc. Prof. Behrooz Bahrani

Department of Electrical and Computer Systems Engineering Monash University Melbourne, Australia

NEM Oscillations in the West Murray Zone - 2020

Source: Australian Energy Market Operator (AEMO)

 $Source: \ https://aemo.com.au/_/media/files/electricity/nem/network_connections/west-murray/west-murray-zone-power-system-oscillations-2020-2021.pdf$

Assoc. Prof. Behrooz Bahrani October 22, 2024

Presentation Outline

Motivations and Background

Basics of Impedance-based Stability Analysis

Monash Impedance Analysis Tool (ZAT)

Presentation Outline

Motivations and Background

Basics of Impedance-based Stability Analysis

Monash Impedance Analysis Tool (ZAT)

Oscillations in Power-electronic-rich Power Systems

History of oscillations worldwide and in the Australian Grid

Oscillatory stability is an emerging challenge for large grids all over the world, and new tools and methods are urgently required.

- 2007: 9.44 Hz oscillation in Minnesota with a type-3 wind power plant (WPP)
- 2009: 20-30 Hz oscillation in Texas with 3 type-3 WPPs causing severe damage to the series capacitors and the WPPs
- 3) 2010: 13 Hz oscillation in Oklahoma, USA, with two WPPs reaching up to 5% of the 138 kV voltage, resulted in power curtailment, eventually mitigated by control re-tuning
- 2011: 4 Hz oscillation in Texas at a type-4 WPP after a transmission line tripped
- 5) 2011-2014: 4, 5, and 14 Hz oscillation in Oregon up to 85% of the peak power mitigated by re-tuning the voltage controller of the WPPs
- 2011-2012: 3 Hz oscillation in Oklahoma near a WPP, resulted in power curtailment and mitigated by re-tuning the WPP controller
- 2012-2013: more than 58 oscillation events in North China with a frequency of 6-9 Hz due to the interaction of type-3 WPPs and series compensated lines
- 8) 2014-2015: 30 Hz oscillation in China when a type-4 WPP started exporting power and tripped protective
- 2015: 20 Hz oscillations observed in Hydro One network in Canada after energising a shunt capacitor

- 10) 2017: 37 Hz and 63 Hz oscillations were observed a type-3 WPP in China, which were mitigated by grid strengthening and WPP control update
- 11) 2017: 7 Hz oscillation in solar farm in California
- 2017: 22-26 Hz oscillations in Texas in WPPs fixed by control update
- 13) 2015-2019: 7 Hz voltage oscillations observed in Australia's West Murray zone with low system
- strength and high inverter penetration

 14) 2018-2019: 3.5 Hz oscillations observed in two type-4
 WPP in Hydro One in Canada after a planned line outage
- 15) 2019: 9 Hz oscillation in Great Britain mainly due to low system strength resulting in WPP deloading, mitigated by control upgrade
- 16) 2020-2022: 17-19 Hz oscillation in West Murray zone in Australia, still ongoing and not mitigated
- 17) 2021: 22 Hz oscillation in a solar PV farm in the Dominion Energy grid in the USA
- 18) 2021: 8 Hz oscillation in Scotland, which were damped after some traditional plants were put back into the system. The root cause is still under investigation.

- Both weak and strong grids may experience such oscillations.
- The exact source of oscillations are often unidentified although they are mainly associated with inverters.
- These oscillations have the potential to **slow down the uptake of renewable** energy
 resources and threaten the grid security.
- Most grid operators identify/manage such oscillations reactively.

Oscillations are emerging as a big security risk for large grids.

Ref.: Y. Cheng et al., "Real-world subsynchronous oscillation events in power grids with high penetrations of inverter-based resources," IEEE Transactions on Power Systems, 2022 Early Access.

Motivation for Impedance-Based Stability Analysis

Growth of IBRs:

Increasing renewable energy sources introduce complex stability challenges and oscillation risks.

Limits of Traditional Tools:

Conventional methods struggle with IBR-heavy grids, particularly in the presence of **blackboxed IBR models**.

• Why impedance-based analysis:

A scalable, insightful solution for analyzing complex control interactions, **compatible with blackboxed systems**.

Figure 1: Renewable Energy Zone development in Australia (AEMO 2024 ISP)

Why are current methods insufficient?

Comparing Traditional Methods with IBSA

Method	Advantages	Limitations	Why Insufficient?
EMT Simulation	High accuracy for real-world conditions	Very time-consuming, difficult to scale	Hard to model multi-inverter systems
State-Space Analysis	Directly calculates all system dynamics	Requires detailed linear models, often not available	Incompatible with black-box models
Harmonic Analysis	Effective for specific frequency disturbances	Limited scope, no insight into control interactions	Does not capture all grid interactions

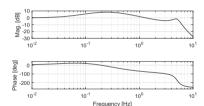
Impedance-based Stability Analysis (IBSA)

Provides faster, scalable, and insightful stability diagnosis for inverter-dominated grids, especially when dealing with black-box models.

Presentation Outline

Motivations and Background

Basics of Impedance-based Stability Analysis


Monash Impedance Analysis Tool (ZAT)

Basics of Frequency-Domain Analysis

MONASH University Power Engineering Advanced Research Laboratory (PEARL)

Bode Plots and Open/Closed-loop Systems

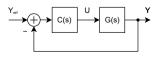


Figure 2: Closed-Loop System

• Transfer Function:

- Relationship between input and output in the frequency domain
- Defined as: $G(j\omega) = \frac{Y(j\omega)}{U(j\omega)}$

Bode Plot:

- Shows system's magnitude and phase response as a function of frequency
- Useful for identifying resonance frequencies and stability margins

• Open-Loop and Closed-Loop Systems:

- The closed-loop feedback systems are commonly used to modify the plant response and maintain stability.
- $L(s) = G(s) \times C(s)$ is the open-loop system and can be leveraged for stability analysis, e.g., using Nyquist criterion.

Nyquist Stability Criterion

Nyquist Plot:

- A graphical method to assess the stability of a system
- Acts on the open-loop system frequency response
- Shows how the open-loop system frequency response encircles the critical point (-1.0)

Nyquist Stability Criterion:

- For a stable system: No encirclements of the critical point
- For an unstable system: clockwise encirclements of (-1,0)

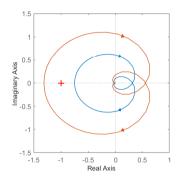
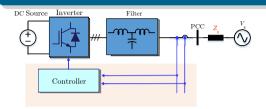



Figure 3: Nyquist Plot Showing Stability

What is impedance-based stability analysis (IBSA)?

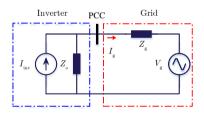


Figure 4: Sub-system partitioning of an inverter and grid.

IBSA in a nutshell:

- Impedance frequency response of components (e.g., IBR and grid) are obtained/identified.
- Stability analysis of the system using the frequency-domain impedances provides insight into dynamics and interactions.

How it works:

- Impedance scanning is used to obtain frequency response data from EMT models.
- These impedances are interconnected as per network topology.
- Frequency-domain stability analysis (e.g., Nyquist) is applied to assess stability.
- Why it is effective: Provides insights into oscillatory modes, including the role of different components.

Stability Analysis of Interconnected Systems

• At the point of interconnection, we can write the closed-loop transfer function as:

$$V(s) = \frac{Z(s)}{1 + Y(s)Z(s)}I_{inj}(s)$$

- Y(s)Z(s) = L(s) represents the transfer function of the open-loop system.
- Frequency-domain techniques, such as Nyquist plots, can be applied to the frequency response of such a transfer function.

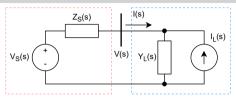


Figure 5: Equivalent circuit for impedance-based analysis

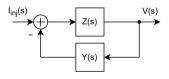
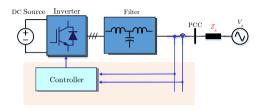



Figure 6: Equivalent closed-loop system for impedance-based analysis

Impedance-based stability analysis

MONASH University Power Engineering Advanced Research Laboratory [PEARL]

General steps to apply the method to a real system

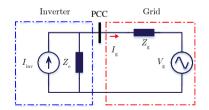
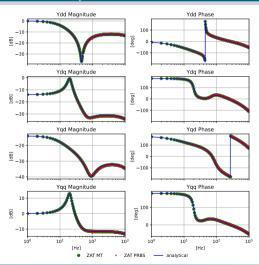
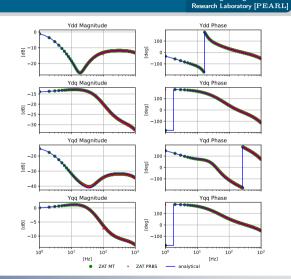


Figure 7: Sub-system partitioning of an inverter and grid.

• Step 1: Divide components into two sub-systems.

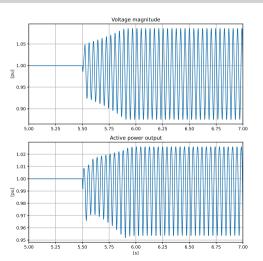

 Step 2: Identify the impedance/admittance of the subsystems.

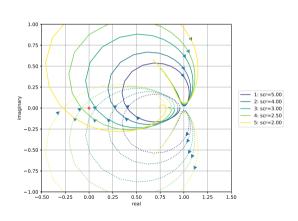

 Step 3: Construct the open-loop frequency response from impedance/admittance data and perform stability analysis, .e.g., with Nyquist criterion.

Impedance Scanning from EMT Models

MONASH University Power Engineering Advanced

Two Examples




Impedance-based Stability Analysis

Research Laboratory [PEARL]

Time Domain and Nyquist Plot Example: Changes in SCR

Impedance-Based Stability Analysis: Use Cases

Control Interactions:

Diagnose and mitigate oscillations in multi-inverter systems and complex networks like REZs.

• Early-Stage Screening:

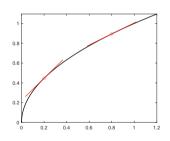
Identify stability issues during planning of new IBR plants and other grid components.

• IBR Control Optimization and Tuning:

Provides detailed insights into IBRs behavior, supporting stability analysis, and **control parameter** optimization and **tuning** under various grid conditions.

Impedance-based Stability Analysis: Limitations

Small-signal domain only:


 Does not capture large-signal events like faults or islanding; non-linear effects may be overlooked.

Operating point dependency:

 Impedance often varies across operating points; each critical point requires separate analysis.

• Careful impedance extraction needed:

 Accurate data collection and scanning are essential; incorrect handling can lead to misleading results.

Presentation Outline

Motivations and Background

Basics of Impedance-based Stability Analysis

Monash Impedance Analysis Tool (ZAT)

Monash University Impedance Analysis Tool (ZAT)

Monash Grid Oscillation

Software Development)

Project (Study and

 In 2023, the Australian Renewable Energy Agency (ARENA) funded a project at Monash University to develop an impedance-based stability analysis tool.

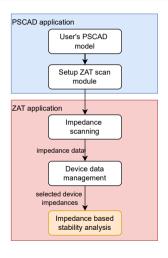
Objective:

 Impedance-based stability analysis for industry-oriented practical situations.

• Industry engagement:

- AEMO and Powerlink.
- Collaborating to match features with needs.

Timeline:


- July 2023: project commenced.
- February 2024: first beta version released.
- August 2024: second beta version released.
- End of 2024: expected first industry wide release.
- July 2025: end of current ARENA project.

ZAT Overview and Workflow

A **PSCAD library component** (ZAT scan module) for interfacing to PSCAD and a **separate application** for analyses.

- Step 1: Impedance estimation using PSCAD EMT models of IBRs and networks, including support for both single and multi-port elements.
- Step 2: Time-domain data is transferred to the ZAT for impedance scanning and further analysis.
 - A database-based approach for managing the impedance data.
- Step 3: Stability analysis of interconnected impedance systems, including support for multi-inverter systems.

ZAT Software Development

Workflow, Security Testing, and Quality Assurance

- Bitbucket
- 3 circleci

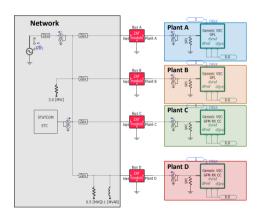
- Python-based application: Core interface and analysis built in Python, with a custom PSCAD ZAT module component.
- Trunk-based development: Regular, smaller updates ensure reliable improvements and reduce the risk of large-scale issues.
- Automated security checks: Snyk scans catch vulnerabilities in code and third-party libraries to ensure security.
- Continuous Integration (CI): Each code update triggers automated tests to maintain stability and security.
- Best practices: We follow standard software engineering practices to ensure strong Software Quality Assurance.

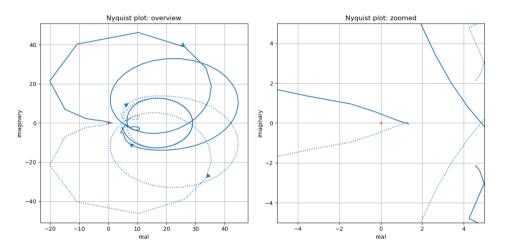
Multi-IBR Case Study with ZAT

MONASH University Power Engineering Advanced Research Laboratory (PEARLI)

System Description

- ZAT can be extended to multiple-inverter systems.
- Split system into bulk network and plant of interest: "one plant at a time".
- The studied system consists of the following:
 - GFLI Plant A: Outer power control only.
 - GFLI Plant B: Fast voltage control loop.
 - GFMI Plant C: Electrically close to the PCC bus.
 - GFMI Plant D: Electrically distant from the PCC bus.
- The system also includes:
 - A weak connection to the grid.
 - · Local passive loads.
 - A STATCOM at the PCC.

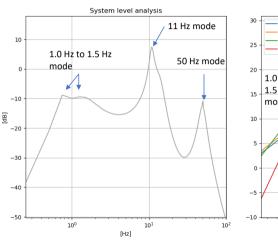


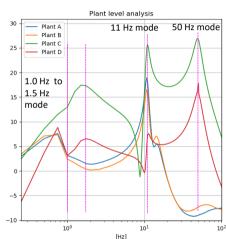

Figure 8: Case study network.

Multi-IBR Case Study

MONASH University

Research Laboratory [PEARL]


System-level Nyquist plot demonstrates system is stable



Multi-IBR Case Study

MONASH University Power Engineering Advanced Research Laboratory [PEARL]

System and Plant-level Closed-loop Stability Analysis Insights

Thank you for your attention!

MONASH
University

Power Engineering Advanced
Research Laboratory [PEARL]

Q/A

