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Motivation: explore interface of electricity market

design and resource adequacy (RA)

» Market design impacts incentives
for investment decisions, which in
turn influences resource adequacy
(RA), and this interaction is
especially challenging under future
economic, policy, and system
condition uncertainty
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https://isorto.org/#media-section

EMIS: a fundamentally different modeling approach

Capture interaction between market design, investment, and RA

Represent multiple perspectives with nuances of investment landscape: imperfect
information, varying risk attitudes, technology preferences, and financing parameters
Integrate with NREL's Probabilistic Resource Adequacy Suite (PRAS) and Sienna tools
Open source to support broader application
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https://www.nrel.gov/analysis/sienna.html
https://github.com/NREL/EMISAgentSimulation.jl

Published EMIS Analyses
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HIGHLIGHTS

Different wholesale market | i i
structures and products: |

« Both ORDCs and capacity markets can achieve resource adequacy targets
« Capacity markets can reduce wind and solar buildout due to suppressed energy prices.
« Static capacity demand curves achieve reliability targets with stable price signals.

Applied Energy The interaction of wholesale electricity market structures under Utures . orocs increase generation commitment but at the expense of higher system costs
with decarbonization policy goals: A complexity conundrum « Achicving high clean cnergy targets requires cost-competitive flexible technologics.
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RTS-GMLC test system

3 zones based loosely on portions of the SW U.S.
(CA, NV, AZ)

— Initial System Reliability Requirement: ~8900
MW

— Initial System Derated (Unforced) Capacity:
~8400 MW

Uncertainty Parameter: Load Growth

Horizon: 15 years (10 year rolling horizon 2020-
2035)

Representative Days: 20

Markets: energy, operating reserves (reg up, reg
down, flex up, flex down, primary, synchronous),
forward capacity, clean energy credit

Clean Energy Targets (CETs) by 2035: 45% (low),
75% (mid), 100% (high)

https://github.com/GridMod/RTS-GMLC
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Highlights of recent electricity
markets analysis using EMIS
modeling suite




Scenarios

Cap_NoORDC
Base Energy (without ORDC) + CEC market +
static capacity market + base reserve penalty price

NoCap_NoORDC HalfCap_NoORDC [ DoubleCap_NoORDC DynamicCap_NoORDC

Ca paCIty Market sensitivities Without capacity 1/2x static capacity 2x static capacity With dynamic RA-

market market IRM market IRM informed C?F?&city market

NoCap_Conv DynamicCap_Conv

With Convolution With Convolution
ORDC ORDC

DynamicCap _SMC
With SMC ORDC

ORDC sensitivities NoCap_SMC
With SMC ORDC

IRM = Installed Reserve Margin; ORDC = Operating Reserve Demand Curve; SMC = Sequential Monte Carlo; CEC = Clean Energy Credit NREL | 7



Key model enhancement #1.:
Dynamic, RA-informed capacity market demand curve

Are Iteratively
metrics add new CT
higher capacity until
than metrics reach
targets? target levels

Create future copper-
plate PRAS system:
considering load growth, Calculate RA
end-of-life based
retirements, and
expected online capacity
of queued and under-
construction projects.

metrics (e.g.,
LOLE, NEUE) AIRM =

Iteratively
remove CT
capacity until
metrics reach
target levels

ACT capacity
peak load
Are

metrics

lower than
targets?

IRM = Installed Reserve Margin (% total installed capacity relative to peak load) NREL | 8



Impact of capacity market demand curves

Capacity Market Price (/kW-year)
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Well-calibrated static curves reach similar
RA (not shown) and system buildout
outcomes as dynamic RA-informed curves

lead to oscillations in capacity market prices
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Key model enhancement #1: Sequential ORDCs

Calculate generator and storage resource unavailability profiles based on sequential
Monte Carlo (SMC) simulations, which takes into account the chronological factors
affecting the resource unavailability profiles. This improves upon the previous
Convolution-based method that does not account for chronology.

5000

Price (S/MW)

Convolution tends to under-
value the potential of
storage in reducing
probabilities of reserve
shortfall, resulting in higher

scarcity probabilities and
ORDC prices —r _|—|_I

Convolution

—SMC

0 500 1000
Reserve Quantity (MW)

1500

Convolution vs SMC ORDCs. This
example curve is for the Primary
operating reserve product, but
ORDCs were also applied to the
Synchronous operating reserve
product.
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Comparing resource adequacy mechanisms

NoCap_NoORDC, Low CET I | , Less flexible and peaking units (i.e.,

Gas CT, RE-CT, batteries) if neither

capacity market or ORDC
NoCap_Conv, Low CET

Cap_NoORDC, Low CET

a

DynamicCap_Conv, Low CET

5 10

0 15 20 25
mCoal mNuclear mGasCC wGasCT mRECT mHydro mWind = Solar mBattery Installed Capacity (GW)

Structures with capacity markets tend to favor more capital-intensive
peaking technologies while reducing wind and solar build-outs due to
suppressed energy and clean energy market prices, particularly in the

absence of strong clean energy targets (i.e., low CET cases).
NREL | 11



Comparing resource adequacy mechanisms

160
Absence of any RA mechanism (capacity market
or ORDC) results in system build-outs with
120 ——
N lower reliability levels
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o o ¢ o o o o achieve RA target
2024 2026 2028 2030 2032 2034
Year
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Costs under different RA mechanisms

(A) Total System Costs

= Absence of both a capacity market
and ORDCs has the lowest investment

v

NoCap_NoORDC, Low CET

NoCap_Cony, Low CET . ‘ and fixed costs, but the highest lost
Cap__NOORDC, Low CET . ‘ load and insufficient reserve costs
DynamicCap_Conv, Low CET . ‘

Cost (Billion $)
M Investment M Queue 0&M Fuel mCarbon StartUp mLostLoad m Insufficient Reserve

B) Lost Load and Insufficient Reserve Costs

NoCap_NoORDC, Low CET

NoCap_Conv, Low CET
Cap_NoORDC, Low CET

DynamicCap_Conv, Low CET
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Costs under different RA mechanisms

(A) Total System Costs

NoCap_NoORDC, Low CET

I
—

:—
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NoCap_Conv, Low CET

Cap_NoORDC, Low CET

DynamicCap_Conv, Low CET

Cost (Billion $)

M Investment M Queue 0&M Fuel mCarbon StartUp mLostLoad m Insufficient Reserve

(B) Lost Load and Insufficient Reserve Costs

NoCap_NoORDC, Low CET

NoCap_Conv, Low CET

Cap_NoORDC, Low CET

DynamicCap_Conv, Low CET

50,000
100,000
150,000
200,000
250,000
300,000

50,000

o
m Insufficient Reserve Cost ($)

W Lost Load

= The presence of ORDCs increases
total system costs, including higher
carbon costs.

= However, these cases have
significantly lower levels of lost load
and insufficient reserves, despite
having less installed capacity than
the corresponding cases with
capacity markets. This indicates
that ORDCs may increase the
commitment of available
generation units.
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Annual market revenues under different RA

mechanisms

(A) Low CET

R HoORDE ow cE ‘ " Unusually high energy and ancillary
NoCap_Conv, Low CET ‘ service revenues are due to significantly
oo NoORDC. Low e I - high number of loss of load and resource
insufficiency events in the early
DynamicCap_Conv, Low CET I - simulation years

Total Revenue (S/kW-yr)
M Energy CEC M Primary Synchronous Flex_Up ™ Flex_Down Reg_Up M Reg_Down M Capacity

(B) Mid CET

o (=] o
o L o
o o

<t
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M Energy CEC M Primary Synchronous Flex_ Up M Flex Down Reg Up M Reg_Down M Capacity
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DynamicCap_Conv, Mid CET
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Annual market revenues under different RA

mechanisms

(A) Low CET

NoCap_NoORDC, Low CET

NoCap_Conv, Low CET

Cap_NoORDC, Low CET

DynamicCap_Conv, Low CET

o
o
<t

Total Revenue ($/kW-yr) Ca paCIty markets suppress

M Energy CEC M Primary Synchronous Flex_Up ™ Flex_Down Reg_Up M Reg_Down M Capacity .
_ energy and REC prices
(B) Mid CET

NoCap_NoORDC, Mid CET I ‘ N

NoCap_Conv, Mid CET

Cap_NoORDC, Mid CET

DynamicCap_Conv, Mid CET
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Annual market revenues under different RA

mechanisms

(A) Low CET

NoCap_NoORDC, Low CET

NoCap_Conv, Low CET

Cap_NoORDC, Low CET

DynamicCap_Conv, Low CET

- 2 S o S S S o S Inclusion of ORDC increases energy
Total Revenue ($/kW-yr) market prices and revenues
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Reaching “High” Clean Energy Targets (CETs)

Total Annual Generation Percentage by Technology

| . | ;
Mid High High CET + Low — . . . .
et | cer | RECTCOst = Achieving very high clean energy generation targets
100% o oy .

gﬂ E ot 5% E e depends on the cost-competitiveness of clean energy
g 80%  768% | I colar ™ technologies that can support balancing needs across
o | | . .
- I i = Wind multiple timescales
'g : : W Hydro -
O 40% | i B RECT
o I I
@ I I B Nuclear
O 20% : :

0% : | = Total annual wind and solar curtailment substantially

< .
Qc;“ s exceeds the annual generation output of carbon-
> 7 . . .
Y & @&f@ emitting resources in the 100% CET case
o @) . . . .o .
N o*if = Curtailment is significantly reduced with low-cost
A%
— RE CTs
Total Annual Generation and Curtailment (TWh) . POintS to the pOtent|a| Value WhiCh |Ong-duratIOn
= Coal m Gas CC Gas CT m Curtailment storage technologies and multiday (or even
High . .
oynamiccap_swc, ign ce7 || | A NAAHIN I multi-week) operating products can add to
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Summary and next steps

. Summary

— The effectiveness of different wholesale market structures are evaluated in an agent-based model --
taking into account the profit-seeking behavior of heterogenous generation investors

— Our model is able to capture the interactions among different market products, as well as the feedback
effects between price/revenue and buildouts

— Both ORDCs and capacity markets can achieve resource adequacy targets, but with noticeable
differences in the types of resources built (e.g., capacity markets favor more capital-intensive peaking
technologies)

— There is a disconnect between annual clean energy targets and operational unit commitment / dispatch

— The effectiveness of wholesale markets in achieving very high CETs highly depends on the cost-
competitiveness of dispatchable clean energy technologies (e.g., RE-CTs)

. Current and future work
— Incorporate multiple years of climate change adjusted data

— Implement additional operational and settlement structures to better value Long Duration Energy
Storage (LDES) and energy availability more generally

— Explore adoption/discontinuation of certain market products

NREL | 19
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