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Resource Adequacy (RA) is a component of grid reliability

Elements of Grid Reliability
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“[t]he ability of the electric system to supply the aggregate electric power and energy
requirements of electricity consumers at all times while taking into account scheduled
and reasonably expected unscheduled outages of system components”

NERC “2022 State of Reliability”



RA is the primary reliability component driving capacity expansion models
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RA and CEM methods need to advance as the resource mix evolves

Ensuring Efficient Reliability
NEW DESIGN PRINCIPLES
FOR CAPACITY ACCREDITATION

A Report of the Energy Systems e
Integration Group’s Redefining

Resource Adequacy Task Force ES|G
February 2023

ENERGY SYSTEMS
INTEGRATION GROUP

FIGURE 4
Transition of Capacity Accreditation Methods
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https://www.esig.energy/new-design-principles-for-capacity-accreditation/

What'’s the matter with capacity credit?

1. Capacity credit is assessed in the planning
region where a resource is sited, even if it is used
to meet RA needs in a different planning region
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2. “Peak load” or “peak net load” may not
be the most stressful period

3. Capacity credit does not account for resource
complementarity or load diversity

Take the least-windy day in each region.
How windy are other regions on that day?

Single-day wind
capacity factor [%]
averaged over all sites



What'’s the matter with capacity credit? ;

1. Capacity credit is assessed in the planning 3. Capacity credit does not account for resource
region where a resource is sited, even if it is used | complementarity or load diversity
to meet RA needs in a different planning region

Take the peak demand day in each region.
How close are other regions to their peak on that day?
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Daily regional
max demand
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peak demand [%]
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4. Requires additional verification to assess whether the intended
reliability target (LOLE, NEUE) has been met; capacity credit and planning

2. “Peak load” or “peak net load” may not o _
reserves are reliability proxies

be the most stressful period



New “Stress Periods” Method

1. ldentify days with highest risk of unserved energy for all regions
(“stress periods”)

2. Include stress periods for each region and model them
coincidently for U.S. wide capacity expansion

3. lIterate until reliability target is achieved for all regions



Overview of the Stress Periods Method
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Illustrative Results
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Considers multiple sources of grid stress and their changes over time
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And finds the optimal solutions™ to meet the stresses

* Solutions chosen from multiple combinations of resources and regions
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How much does the choice of RA method matter?

Compare cost and reliability of portfolios designed using the
Stress Periods method vs. a traditional Capacity Credit method
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The Stress periods method results in lower costs °
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The Stress periods method results in lower costs and greater reliability
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Stress periods method results in greater transmission expansion, especially

Preliminary
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Advantages of the Stress periods method exist across a range of conditions

Existing policies 2 lower RE
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The choice of RA method is more important when there is greater

reliance on weather-dependent resources, with more
Preliminary interregional coordination, and for larger systems sizes
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Conclusions

Preliminary

Introduced a (computationally manageable) planning method that integrates
probabilistic RA modeling to identify and model grid stressful periods directly

for capacity expansion decisions

The stress periods method results in systems that are both lower cost and
more reliable compared to a traditional capacity credit-based approach

How RA is considered in capacity expansion becomes more important with
greater weather-dependent resources and interregional coordination

The method is straightforwardly extendable: more weather conditions, wider
range of outages, multiple reliability metrics, and more

NREL | 17
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