

Distributed PV + Behind-themeter Storage Modeling Overview using dGen[™] Paritosh Das Senior Research Scientist/ Engineer National Renewable Energy Laboratory (NREL) 2023 Long-term Load Forecasting Workshop June 14th, 2023

Importance of Including Distributed Energy Resources in Load Forecasts

Context:

- Analysts project that distributed solar photovoltaics (DPV) will continue growing rapidly.
- Growth in DPV has critical implications for utility planning processes, potentially affecting future infrastructure needs.
- Appropriate techniques to incorporate DPV into utility planning are essential to ensuring reliable operation of the electric system and realizing the full value of DPV.

Importance:

- Distribution system investments: replacing aging infrastructure and distribution expansion.
- Procurement of generating capacity to meet peak demand.
- Proactive investments to increase hosting capacity.
- Evaluating the costs and benefits of incentives or policies to promote distributed energy resources (DER).

Motivations for DER Adoption

- Most consumers are primarily motivated by savings on utility bills
 - Modeling prices and policies is important
- Consumers are influenced by spatial and social "peer effects"
 - Motivates spatially-granular modeling
- Many of the variables that predict adoption decisions are nondemographic, e.g. pro-environmental norms, innovativeness, social support

Forecasting Distributed Energy Resources: NREL's dGen[™] Model

- Forecasts adoption of distributed solar, storage, wind, and geothermal by region and sector through 2050
- Agent-Based Model simulating consumer decision-making
- Incorporates detailed spatial data to understand regional adoption trends

Source: Cole, Wesley, Will Frazier, Paul Donohoo-Vallett, Trieu Mai, and Paritosh Das. 2018 Standard Scenarios Report: A U.S. Electricity Sector Outlook <u>https://www.nrel.gov/docs/fy19osti/71913.pdf</u>

Used in several key analysis: Solar Futures Study, Storage Futures Study, Distributed Wind Energy Futures Study, LA100, PR100, LA100-Equity Strategies.

Agent-Based Consumer Level Understanding of DERs

Spatial Data Matters In Forecasting Technology Adoption

LEARN MORE

- dGen[™] uses householdlevel data to instantiate consumers (agents)
- Attributes can include building suitability or location on the distribution system
- Agents can be individual or statistical
- This level of spatial resolution is crucial for distribution system modeling

Framework for Modeling DER Adoption

Behavior and Decision-Making

I would seriously consider solar if the

payback time was 20 years I would seriously consider solar if the

payback time was 25 years I would seriously consider solar if the

pavback time was 30 years

Agent decision-making (e.g., price needed to adopt) is calibrated through surveys and program data (top). It uses location-based attributes (e.g., building size, proximity to other adopters) to represent population heterogeneity (left)

Mavbe

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

I don't

know

0

0

0

0

0

0

0

0

0

0

- The dGen model simulates bottoms-up consumer decisionmaking, allowing a rich representation of
 - heterogenous population
 - behavioral drivers of energy actions
- The simulated decisions are calibrated to many data sources, but are also designed to be flexible as needed by the consumer

Storage Dispatch Strategies

California Commercial Customer

Model uses the following storage dispatch strategies:

Select Theme:
Local Solar and Storage -
Select Dimension:
Rooftop Solar -
Select Layer:
Deployment Capacity -
Select Electricity Demand Projection:
Moderate -
Select Scenario:
SB100 -
Select Spatial Resolution:
Tracts -
Please select an option Receiving Stations Tracts
2035
2020 2025 2030 2035 2040 2045 Select Year

dGen[™]: Orlando Utilities Commission (OUC)

Adoption by Top 20 Feeders (MW)					
eder ID¹	2020	2030	2040	2050	
А	1.7	16.5	21.4	23.2	
В	1.2	15.7	20.6	22.3	
С	0.9	11.7	15.6	17.1	
D	0.4	6.2	10.1	16.5	
Ε	0.9	9.4	13.7	15.5	
F	0.6	8.7	13	15.3	
G	1.4	9.4	12.8	14.5	
Н	0.8	8	12	12.6	
1	0.8	7.7	10.5	12	
J	0.7	6.3	8.7	10.8	
К	0.6	5.9	8.1	9	
L	0.5	5.9	8.2	8.8	
М	0.9	5.7	8	8.8	
Ν	0.4	6.4	8.1	8.6	
0	0.7	5.6	8.1	8.6	
Р	0.5	5.9	8	8.3	
Q	0.4	5.8	7.6	7.9	
R	0.2	4.5	6.6	7.9	
S	0.2	4.4	6.5	7.8	
Т	0.4	4.8	6.8	7.7	

Distribution-level DER modeling seeks to understand DER adoption patterns either at the individual or substation-level to inform distribution planning

Animation of DPV adoption by Distribution Feeder for **Orlando Utilities Commission (OUC) Service Territory**

Ongoing Research

Modeling Co-adoption of Technologies

Consumers increasingly co-adopt distributed solar with (a) energy storage, b) energy efficiency appliances and (c) electric vehicles.

- 1. Identify **residential customer** preferences for co-adopting/using solar PV, energy storage, and electric vehicles (EVs)
- 2. Determine **commercial and industrial (C&I) customer/facilities manager** preferences for adopting/managing workplace PV, energy storage, fleet EVs, and EV charging infrastructure
- 1. Improve Data Standardization and Access: Publicly available datasets
- 2. Model and Algorithm Development: Standardized data (agents) and new modules
- Dissemination and Outreach: Provide technical assistance to ISO/RTOs, utilities, state and local energy planners, local governments, policymakers, and regulators.

Drivers of Uncertainty

Thank you

www.nrel.gov

Paritosh.Das@NREL.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. **NREL**