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Capacity Expansion and Resource Adequacy

Capacity Expansion Planning Resource Adequacy Assessment
o Longer-term planning optimization e Shorter-term operations simulation
e Computationally demanding, even in the o Preferably probabilistic, considering many
deterministic case alternative realizations of future system
e Usually only considers limited number of state
representative operating periods e Every hours matters

e Resource adequacy is a key constraint

How do we reconcile these paradigms to plan economically-efficient, resource adequate systems
without sacrificing computational tractability?
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Planning Reserve Margin lteration
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Capacity Credit Iteration
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Capacity Credit Iteration

System ELCC (MW)

Nameplate Capacity Investment (MW) 5



Risk Period lteration
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Risk Period Iteration: example application

e Adequacy stress test: plan a
greenfield, 100% wind/solar/storage
system

e Seven year resource+load dataset with
transmission constraints between 134

regions of contiguous U.S. (derived
from ReEDS inputs)

Wind/CSP Region



Risk Period Iteration: discovering days to drive adequacy investment
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Risk Period Iteration: discovering days to drive adequacy investment
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Risk Period Iteration: discovering days to drive adequacy investment
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Risk Period Iteration: discovering days to drive adequacy investment
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Risk Period Iteration: discovering days to drive adequacy investment
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Risk Period Iteration: discovering days to drive adequacy investment
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Risk Period Iteration: discovering days to drive adequacy investment
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Risk Period Iteration: discovering days to drive adequacy investment
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Considering Energy Limited Resources

e Full “sparse” chronology
repeats representative days in
temporal sequences with
minimal impact on problem
size

e Risk periods can be explicitly
represented within overall
chronology

State-of-Charge (MWh)
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Considering Energy Limited Resources

Reference Case

300
12-hour Pumped-Hydro Storage
e Capacity credit-based S 250 10hourBaftery Starags
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frameworks require arbitrarily T o00 ™= 6-hourBattery Storage
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©
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e With a direct risk period % 100 I I I I I I
representation, resources can % 50 . I
be sized flexibly to system I
O _____ — N
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Blair, Nate, Chad Augustine, Wesley Cole, et al. 2022. Storage Futures Study: Key
Learnings for the Coming Decades. Golden, CO: National Renewable Energy Laboratory.
NREL/TP-7A40-81779. https://www.nrel.gov/docs/fy220sti/81779.pdf
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Adequacy Framework Performance Comparison (RTS-GMLC)

Relative System Cost
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Does Risk Period Iteration scale?
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Hot-starting Iterative Optimization Solves

Without hot starts

With hot starts |-
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Adequacy Framework Performance Comparison

Relative System Cost
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Adequacy Framework Performance Comparison
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Adequacy Framework Performance Comparison

—— CC_iter

6 PRM_iter
riskperiod_iter
riskperiod_iter_flexstor

Normalized Unserved Energy (%)

0 1 2 3 4
Run time (s)




Sparse Chronological Energy Constraints (1/2)

Aey = Zptd vdeD (1)
teT
le] <> pa VteT,deD (2)

i=1..t

[e]> > pa VteT,deD (3)

i=1..t



Sparse Chronological Energy Constraints (2/2)

€,p+1 = €0,p + NpAeg, Vp€P (4)
O§e0p+LeJdp Vpe P (5)
0<eop+ (Np—1)Aeq, + [e],, YpEP (6)
eop+[ely, <E WpeP (7)

eop + (N —1)Aeq, + [€] g, SE VpeP (8)



Sparse Chronological Energy Constraints - Problem Size

TD dispatch variables (p:y)

D state-of-charge evolution variables (Aey)

2D state-of-charge bounding variables ([e],, e],)

D state of charge evolution definitional constraints (enforcing the definition of
Aed)

2TD relative minima and maxima inequality constraints (enforcing the definitions
of [e], and |e],)
P boundary condition energy variables (egp)

P boundary condition equality constrants (enforcing the definition of egp)

4P state of charge constraints
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