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Dynamic phenomena 
observed in real world 

Replicate dynamic 
phenomena in computer 
simulations or lab tests

Initial match/guess

Investigation, fine tuning and 
iteration

Data collecting
Hands-on computing 
and experiments
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wind farm 
oscillations

19 events

2021 Dominion Energy 22-Hz oscillations Hydro One 20-Hz/80-Hz oscillations

Australia 7-Hz and 19-Hz oscillations

IBR SSO

Data collecting
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Understand the fundamentals of converter control (inverter-level)

Voltage source converter 
control design has 
considered the following 
aspects:
• converter current limit 

(very fast current control)
• decoupling from grid 

(voltage feedforward)
• decoupled real power 

and reactive power 
control (vector control) 

Textbook on VSC: 
A. Yazdani, R. Iravani, Voltage-Sourced 
Converters in Power Systems, IEEE 
Wiley 2010
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Understand the fundamentals of IBR plant control (plant-level)
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Converter-driven oscillations: based on simulation and experiments

Weak grid 
oscillations

Dynamic voltage 
stability

dV/dP <0

Plant-level 
voltage control 

delay

PLL + fast power 
control 

PLL 

PLL insufficient 
damping

Interaction with 
shunt capacitor

Slow inner 
current control

< 5Hz [1]

< 10 Hz [4]

< 10 Hz [3]

➢ >10 Hz in dq
➢ Sideband oscillations in the 

phase currents [2]

➢ >10 Hz in dq
➢ Dominant supersynchronous oscillations. [2]
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An example of oscillation replication and 
mechanism analysis
• Data collection

• EMT/hardware experiments

• Analysis & simulation results matching the real-world observations:
• Reasoning, analysis, mathematic model building

7



Data collecting: voltage stability related issues [1]

#3: (2010) Oklahoma 
Gas & Electric (OG&E) 
observed 13- Hz 
oscillations at two 
nearby WPPs [4]. The 
oscillations occurred 
when wind farm output 
was above 80 percent 
of its rated level and 
the magnitude of 
oscillation reached 5% 
of the 138-kV voltage. 
OG&E curtailed the 
plant’s output until the 
manufacturer made 
modifications to the 
wind power conversion 
system. 

#4: (2011) 4-Hz 
oscillations were 
observed at a 
type-4 WPP in 
Texas region 
after a 
transmission 
line tripped [18]. 

#5 (2011-2014) Since 2011, 
oscillations were observed by 
BPA during high wind 
generation conditions [4]. A 
450- MW type-4 WPP located in 
Oregon was identified as the 
source. In summer 2013, BPA’s 
phasor measurement unit 
(PMU) monitoring system 
identified 5-Hz oscillations in 
voltage, real and reactive 
power. In early 2014, BPA 
detected 14-Hz oscillations. 
Reactive power oscillations 
reached 80 Mvar peak to peak 
while power reached 
85% of the rated level. The 
wind generator manufacturer 
upgraded their voltage control 
and no oscillations have been 
detected since. 

#6 (2011-2012) OG&E reported two 
wind oscillation events, one in 
December 2011 and another one in 
December 2012. Both were 
triggered due to line outage. For 
the 2012 event, 3-Hz oscillations 
appeared at a 60-MW WPP after a 
line outage [4]. Curtailing the power
helped restore the system. OG&E 
worked with the WPP manufacturer 
to tune the WPP control 
parameters, resolving the issue. 

Line tripping 
High power 
Voltage control
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Mechanism: voltage control vs. var control

For well-tuned control parameters, if P/Q control mode is 
adopted, the system loses stability without oscillations. If P/V 
is adopted, the system loses stability with oscillations. 

Ref: L. Bao, L. Fan, Z. Miao, and Z. Wang, “Hardware demonstration of weak 
grid oscillations in grid-following converters,” the 53rd NAPS, 2021. 

PQ control with P 
control very fast

PV control
PQ control

Hardware demonstration: weak grid oscillations
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• We have demonstrated weak 
grid oscillations. When grid 
strength reduces, oscillations 
may appear. High power 
exporting makes stability worse. 

• Those features match the real-
world observations, except:

• Fast voltage control in our 
experiments is good for 
stability. 
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Then, how to understand the 
real-world observation: 

Slowing down voltage control 
mitigates the 4-Hz oscillations 
in ERCOT 

Why?

The two voltage controls are 
different:

Inverter-level control

Plant-level control (delay)

[5] Li, Y., Fan, L. and Miao, Z., 2018. Stability control for wind in weak 
grids. IEEE Transactions on Sustainable Energy, 10(4), pp.2094-2103.

[6] Ramasubramanian, D., Baker, W., Matevosyan, J., Pant, S. and 
Achilles, S., 2022. Asking for fast terminal voltage control in grid 
following plants could provide benefits of grid forming behavior. IET 
Generation, Transmission & Distribution.



Oscillations are due to plant-level voltage control with 
delay. Larger gains make oscillations worse. 

If the voltage control is implemented in inverter level, 
larger voltage gains make stability better. Texas 4-Hz oscillations

Mechanism: delay

The previous voltage stability example: SCR →1.04. In Texas 4-
Hz case, SCR is 2. 

Mechanism: delay in plant-level voltage control
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Mechanism: delayMechanism: full picture to consider the real power effect
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This block diagram can explain the critical features of Texas 4-Hz oscillations:
1. High power makes oscillations worse
2. Weak grid makes oscillations worse
3. Large plant-level voltage control gains make oscillations worse
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More insights from the 
previous model:

Real power / voltage has 
a very small gain at low 
frequency. 

Real-world observation: 
0.1-Hz oscillations shown 
in voltage and reactive 
power, but not in real 
power.  



Computer simulation
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A line tripping event causes SCR reduction. 2-
Hz oscillations appear in voltage and reactive 
power. 

Note the oscillations in real power are less 
significant. 



Concluding remarks

• Grid oscillations have various causes. 

• As a first step, it is suggested to collect sufficient information of 
generators, grid, and oscillations’ critical features, and

• Influence of power, grid strength, series compensation, shunt compensation, 
voltage control, etc. 

• Replication and mechanism analysis require
• Hands-on computing and/or experiments

• Reasoning and analysis

• And iterations

15


