Grid-support Opportunities Provided by GFL and GFM IBR

Babak Badrzadeh 26 October 2022

aurecon

Bringing ideas to life

```
Bringing idea.
```

Our current GFL and GFM BESS projects

Power system needs

Current allocation and prioritisation in grid forming inverters

Bringing ideas

System strength support

aurecon

Bringing ideas to life

System strength support

Grid-forming to synchronous condenser MVA effectiveness: 1.0-2.0 pu

Hosting capacity release of grid-following inverters: 2.0-4.0 pu

Lesson 1: System strength support provided by grid-forming inverters is comparable or sometimes better than that provided by synchronous condensers.

Lesson 2: Provision of additional fault current has not been always identified as a key factor from a system strength support perspective.

aurecon

Bringing ideas

aurecon

GFM stabilising impact (example 1)

GFLI -GFLI+GFMI

- Oscillation injection test on vendor-specific site-specific EMT models
- GFL experienced sustained oscillations
- GFM did not exhibit any oscillations
- GFL+GFM reduces the oscillations to more than half of that seen with GFL alone

Bringing ideas

GFM stabilising impact (example 2)

Failed ride-through without grid-forming inverters

Successful ride-through with grid-forming inverters

The use of grid-forming and grid-following inverters for system restoration

Bringing ideas to life

Black start candidates studied for Australia's Global Power System Transformation (G-PST) research

aurecon

Bringing ideas

Factors influencing the response of grid-forming blackstart BESS

aurecon