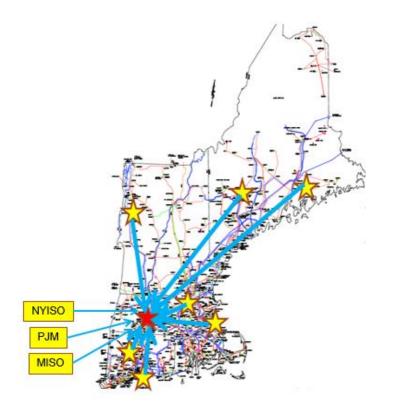


Online Oscillations Analysis at ISO New England

Current Status and Future Needs with Respect to IBR


ISO-NE PUBLI

Slava Maslennikov

TECHNICAL MANAGER, ADVANCED TECHNOLOGY SOLUTIONS

PMU Infrastructure at ISO New England

- ~100 PMUs and constantly growing
- Full observability of 345 kV with some redundancy
- Selected PMU data from NYISO, PJM and MISO
- 30 samples/s
- Operational since 2013
- Adding selected PMU data from TVA, SOCO, SPP

Detection of Oscillations

Voltage Frequ 0.09 Hz 29.82 % 0.17 Hz 6.45 % 0.33 Hz 4.22 % 0.4 Hz 5.76 % 0.51 Hz 6.59 % 0.56 Hz 8.66 % 0.67 Hz 3.08 % 0.84 Hz 5.28 % 1.07 Hz 1.36 % 1.36 Hz 0.44 %

- PhasorPoint (GE application) automatically detects oscillations
 - Detection
 - Characterization (Frequency, Damping, Mode shape)
 - Alarming and Alerting
- Results are updated every 5 seconds
- Reliable detection of oscillations with magnitude larger than white noise

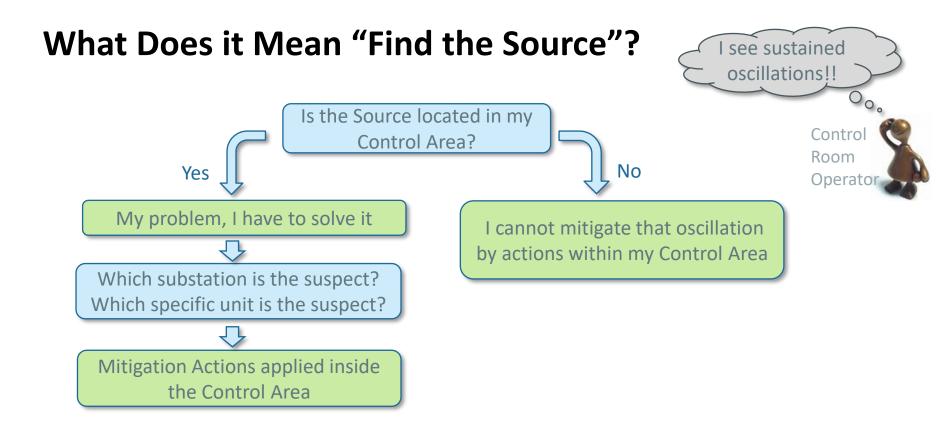
High confidence level that all potentially dangerous oscillations are detected and nothing important is missed

Observed Oscillations

Property	Description
Frequency	0.05 2 Hz; some instances of 8 Hz
Damping	0 20 %
Magnitude	Up to 150 MW, peak-to-peak
Observability	Local and Wide-spread
Duration	From few seconds to hours

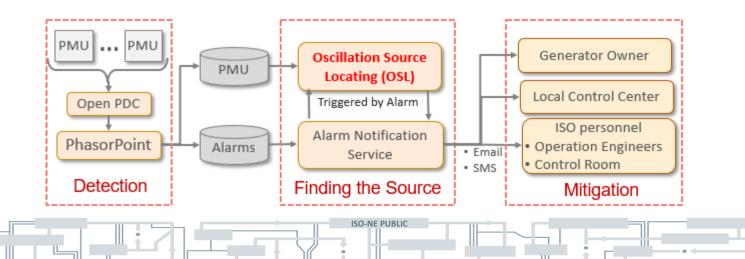
- Natural oscillations: practically always well damped
 - Right design of system components
 - Right tuning of controls
 - Conservative limits for operating conditions

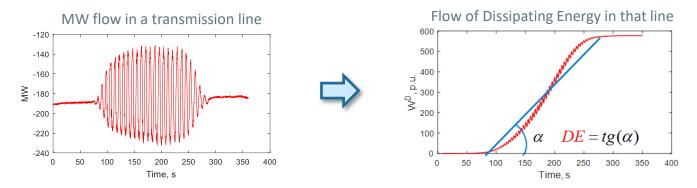
- Forced Oscillations (FO): operational task which cannot be solved in planning
 - Almost 100% of observed sustained oscillations are FO originating from generators


Forced Oscillations (FO)

- Caused by periodic injection of energy into the power system
 - Faulty equipment or control systems
 - Abnormal operating conditions
 - Inadequate control design/tuning
 - Cycling load
- Properties
 - Sustained and exist as long as the forced signal exist
 - The only effective mitigation is the removal of forced signal
 - A possibility of resonance with interarea mode and spreading across the system

Why We Are Concerned with Forced Oscillations?


- Represent a threat for power systems
 - Potential instability and uncontrolled cascading outages
 - Undesirable mechanical vibration in system components
- The presence of FO is an indicator of existing issues
 - Poorly tuned control systems
 - Equipment or control system failure
 - Abnormal operating conditions
- Mitigation is necessary for reliable operation of bulk power system and the key step is finding the Source of FO

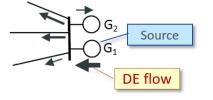

"Find the Source" means providing the Actionable Information to the Operator

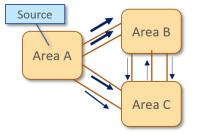
Oscillation Management at ISO-NE

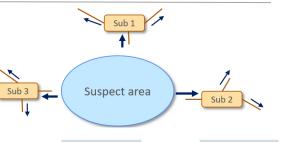
- Objective
 - Detect all significant oscillatory events and generate Alarms/Alerts.
 - Estimate the Source of oscillations for every oscillatory Alarm (and Alert) and deliver results to the designated personnel.
- Fully automated 24/7 process, operational since September 2017

Oscillation Source Locating (OSL) Is the Key

 Dissipating Energy Flow method calculates the flow of Dissipating Energy (*DE*) for any branch *ij* monitored by PMU at bus *i*.

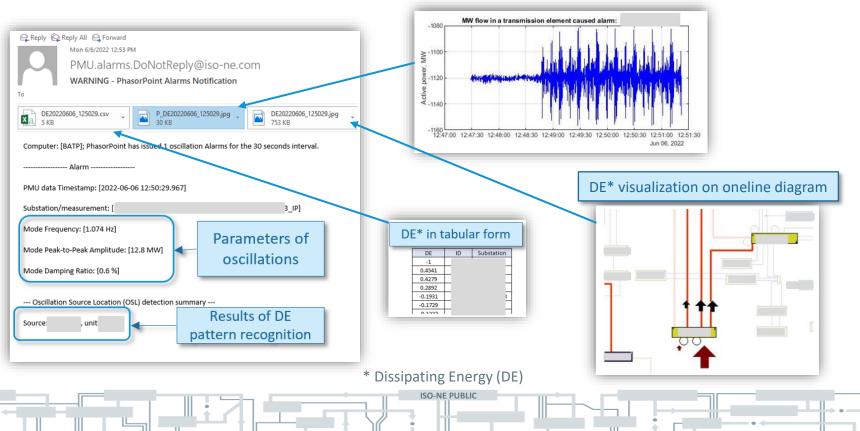

PMU Input: I_{ij} , V_i , $f_i \implies W_{ij}^D(t) = \int (\Delta P_{ij} d\Delta \theta_i + \Delta Q_{ij} d\Delta \ln V_i) \implies W_{ij}^D(t) \approx DE_{ij} \cdot t$

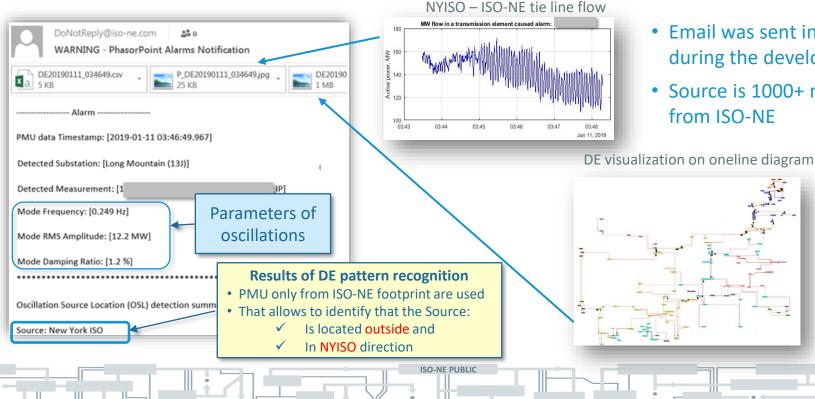

- DE coefficient can be viewed as a regular MW flow in terms of Source-Sink for a flow of the transient energy: flows from Source to Sink
- The direction and the value of *DE* in multiple branches allow tracing the source of oscillations


Interpretation of DE Pattern

ISO-NE PUBLIC

- PMU measurement at the Point Of Interconnection allows to trace specific power plant or generator
- PMU measurements in tie-lines between control areas allow to identify which area contains the source
- Even limited system observability by PMU allows greatly localize the suspect area




Example: Notification Email on Oscillatory Event

• Oscillation caused by testing AVR at a generator within ISO-NE

Example: January 11, 2019 Event

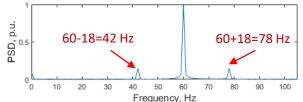
 Near-resonance conditions with inter-area mode around 0.25 Hz have caused the propagation of oscillation across entire Eastern Interconnection

- Email was sent in real-time, during the developing event
- Source is 1000+ miles away from ISO-NE

Statistics of Oscillation Management Operation

- Since 2017, automatically processed 1200+ oscillatory Alerts and Alarms generated by the PhasorPoint application.
- Correctly identified the source (generator and area) for all instances of oscillations with known sources inside and outside of ISO-NE.
- Existing Online Oscillation Management satisfies today's operational needs for online detection of oscillations and efficient mitigation
 - The process works in the background and automatically provides key analytical information for operations when it is needed without the need for human to monitor raw PMU data

Important Implementation Details


- The process is robust and efficient for majority of practical situations
- Can handle actual oscillatory events: variable magnitude, frequency and short duration of oscillation
 - Researches typically assume idealized stationary, infinite oscillation process
- Dealing with actual PMU data
 - Bad data, missing samples, outliers, noise
 - Necessary PMU data filtering and de-trending
- Ability to identify and filter out false Phasorpoint alarms
 - Phasorpoint could generates false oscillatory alarm caused by bad PMU data

Future needs

ISO-NE PUBLIC

Change in Operating Landscape

- Appearance of sub- and super-synchronous IBR-based oscillations (SSO) with frequencies > 2-4Hz
 - Sub-synchronous resonance (SSR)
 - Sub-synchronous control interaction (SSCI)

- Mitigation of SSO is mainly addressed at the planning stage
 - Proper EMT-type of modeling
 - Understand the root-cause of SSO, develop proper component design/tuning and establish operating limits
- Likely reduction of FO instances due to reduction the number of mechanical systems and related equipment failures

Challenges related to IBRs

- Finding specific IBR and control parameter(s) negatively contributing to the damping of SSO in simulation environment and in actual operation
 - FO will still exist and that is operational task
- Existing source locating methods could be insufficient
 - Strong control from multiple IBRs, HVDC and FACTS devices can negatively impact results the source localization
 - Possible more severe negative impact network/load resistance on efficiency of existing energy-based OSL methods
- Lack of high-speed synchronized measurements to track SSO
 - Existing PMUs with 30 samples/s rate are good for < 8-12 Hz due to internal filtering

Areas for R & D

- The need in data-driven methods for locating the source of SSO by using synthetic PMU (simulated EMT-type data) and actual PMU measurements
 - Robust for actual measurements (missing samples, bad data, outliers, noise)
- Compliment traditional PMU with high-sampling rate synchronized measurements
 - At least 200 samples per second
- Energy-based method locating the source of SSO with proper implementation could be efficient

- Use of instantaneous Voltage/Current quantities instead of phasors
- Accounting for both sub- and super-synchronous components of SSO
- Extended energy formulation by adding path-dependent components

Questions?

ISO-NE PUBLIC

Slava Maslennikov, Ph.D. smaslennikov@iso-ne.com